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Abstract 
 

With the United States preparing to make a historic investment in drought mitigation, 

clarifying the impact of irrigation efficiency improvements on water resources is critically 

important. This paper uses two transitions in irrigation technology to investigate whether 

rebound effects cause such efficiency improvements to increase resource extraction, a 

phenomenon known as Jevon’s paradox. We demonstrate how staggered adoption of an 

irrigation technology and dynamic treatment effects causes two-way fixed effects (TWFE) to 

indicate the wrong sign for the effect on withdrawals. Using an estimator appropriate for these 

circumstances, we find no significant evidence of Jevon’s paradox. The dynamic effects we find 

explain this discrepancy and, perhaps more importantly, reveal irrigators’ process of adaptation 

to each new technology at the intensive and extensive margins.   
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1 Introduction 

As a historic drought stresses the water resources of the western United States, 

agricultural producers and policy makers alike are under pressure to find solutions which ensure 

food production with an increasingly scarce resource (Rosa et al. 2018; Droppers et al. 2021). In 

response to this crisis, the Inflation Reduction Act of 2022 includes four billion dollars to 

facilitate drought mitigation in states west of the Mississippi and specifies the following as one 

of three approved activities: “Voluntary system conservation projects that achieve verifiable 

reductions in use of or demand for water supplies or provide environmental benefits in the Lower 

Basin or Upper Basin of the Colorado River” (117th Congress 2022). Public reporting 

concerning this allocation, despite the unspecified means of achieving reductions in the previous 

statement, suggested producers in priority basins could be paid to install more efficient irrigation 

technologies (J. Wilson 2022). While improving irrigation efficiency sounds congruent with the 

goal of continuing production with scarcer resources, the literature suggests adoption of 

increasingly efficient irrigation technologies may be counterproductive and result in the 

degradation of water resources.  

One reason for adverse consequences of technology adoption is based on the hydrologic 

water balance in a system. While the technology can affect water withdrawals, it may also affect 

return flows, which highlights the important distinction between water use and consumption 

(Ward and Pulido-Velazquez 2008; Huffaker 2008). The second reason for adverse 

consequences of technology adoption is the potential for Jevon’s paradox, where changes in 

behavior following technology adoption could cause an increase in water use. Rebound effects 

are generated when resource users adapt to improvements in resource use efficiency such that the 

resource savings produced by the increase in efficiency are partially or completely offset 
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(Greening, Greene, and Difigli 2000). Jevons’ paradox occurs if the rebound effect is large 

enough to create a net increase in resource consumption following an efficiency improvement 

(Jevons 1865; Alcott 2005). While the water balance effect is a critical component of water 

management—especially in surface water contexts—we focus our analysis on the potential for 

rebound effects and Jevon’s paradox in water withdrawals. 

In this paper, we estimate the effect of two efficiency-improving transitions in irrigation 

technology on Kansas irrigators’ groundwater withdrawals using a Difference-in-Differences 

identification strategy and an estimation approach amenable to settings with staggered adoption 

and heterogeneous treatment effects. We find irrigators who switched from flood to center pivot 

irrigation avoided reducing irrigated acreage by decreasing withdrawals immediately after 

changing technologies.1 Therefore, the higher efficiency of the new technology extended the 

productive life of the aquifer. For the conversion from traditional center pivot to LEPA 

irrigation, we find minimal impacts on withdrawals in the short run and steadily larger decreases 

over several years. In summary, there is no significant evidence of Jevon’s paradox in 

groundwater withdrawals. But, for both technology transitions, the magnitudes of reductions in 

withdrawals suggest ex-ante engineering estimates of water savings from the efficiency 

improvements are overly optimistic.  

Our paper makes three primary contributions. First, we estimate the effect of an 

efficiency improvement on the behavior of profit-maximizing producers. Much of the literature 

on rebound effects examines consumer behavior in response to changes in energy efficiency 

(Chan and Gillingham 2015; Borenstein 2015). The first wave of empirical research found 

rebound effects due to improvements in energy efficiency offset a small fraction of potential 

 
1 Descriptions of the design and engineering efficiencies for the irrigation systems in our analysis are 

provided in the subsequent section. 
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savings but rarely caused Jevon’s paradox (Sorrell, Dimitropoulos, and Sommerville 2009; 

Gillingham et al. 2013). A more recent strand of empirical work emphasizes the role of 

technological heterogeneities and biased efficiency estimates (Burlig et al. 2020; Fowlie, 

Greenstone, and Wolfram 2018; Christensen et al. 2023). Alpizar, Carpio, and Ferraro (2023) use 

a randomized control trial to estimate the dynamic treatment effects of households receiving 

water-efficient technologies. But there are few papers with convincing causal estimates of the 

impacts of efficiency improvements on producer behavior—with exceptions on water use 

efficiency noted below. In general, our results support the conclusions in the consumer 

contexts—savings are half of engineering estimates at best, but do not support Jevon’s paradox.  

Our second contribution is to show the importance of estimating dynamic treatment 

effects in a setting with staggered adoption of efficiency-improving technologies (Goodman-

Bacon 2021). As we demonstrate in a simulation context, if the effect of adopting the efficiency-

improving technology grows stronger over time such that contemporaneous reductions in 

groundwater use by later adopters are smaller than those of early adopters, faulty comparisons of 

these groups by two-way fixed effects (TWFE) estimation can create the illusion of later 

adopters increasing water use. In comparison to our preferred estimation approach which 

accommodates staggered adoption and dynamic treatment effects, we find using TWFE produces 

average treatment effects of the opposite sign and dynamic treatment effects exhibiting the 

opposite trend over time. Beyond irrigation technologies, we anticipate that future studies of 

technology adoption will benefit from our work given that staggered adoption is typical of 

technology diffusion processes (Griliches 1957; 1958; Feder, Just, and Zilberman 1985; Sunding 

and Zilberman 2001). 
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Our estimates clarify the effect of efficiency improvements on withdrawals in contexts 

where return flows are non-recoverable. Withdrawals decreased in over 75% of the studies on 

increases in irrigation efficiency reviewed by Berbel et al. (2015) and Pérez-Blanco, Hrast-

Essenfelder, and Perry (2020), and both reviews find efficiency improvements were most likely 

to conserve water in areas with limited return flows. Two influential studies in Kansas stand out 

as exceptions to this conclusion. Pfeiffer and Lin (2014) find that the adoption of Low Energy 

Precision Application (LEPA) irrigation, a more efficient center pivot system described further 

in the next section, increased withdrawals in comparison to a traditional center pivot system. Li 

and Zhao (2018) also find significant increases in withdrawals due to LEPA adoption, but the 

magnitude of the effect depends on the size of irrigators’ water rights. In contrast to these 

previous studies, we find that LEPA adoption led to a small and statistically insignificant 

decrease in water withdrawals.  

As a third contribution, our results for the effect of conversions from flood (a gravity-fed 

system) to center pivot (a pressurized system) irrigation constitute a timely contribution to the 

literature on irrigation and agricultural water use since most econometric studies focus on other 

technology transitions. In much of the United States, India, and South and Southeast Asia, there 

is a widespread and ongoing transition from gravity-fed to pressurized systems (Hrozencik and 

Aillery 2022; Siebert et al. 2010). Kansas irrigators were early adopters of pressurized systems, 

so the two decades of dynamic treatment effects we estimate provide valuable insights for 

regions currently undergoing or anticipating a similar transition. In 2018 for example, just 3 

percent of the 2.4 million irrigated acres in Kansas used a gravity-fed system, but in the same 

year 45 percent of the 2.5 million irrigated acres in the neighboring state of Colorado used a 

gravity-fed system (United States Department of Agriculture 2019). Our results show that 
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irrigators who made this conversion avoided reducing irrigated acreage, thus avoiding the 

primary source of economic losses due to aquifer depletion (Perez-Quesada, Hendricks, and 

Steward 2023). 

2 Background on Kansas water rights and irrigation technologies 

In Kansas, groundwater is the source of roughly 92% of irrigation water due to the 

importance of the High Plains Aquifer in western Kansas (Kenny and Hansen 2004). In order to 

irrigate, a farmer must obtain a water right permit that specifies the total quantity that may be 

pumped annually, the maximum rate at which the water can be extracted, and the location where 

the water may be used (i.e., the place of use). The water right is also given a priority number, since 

Kansas follows the prior appropriation doctrine. The quantity of water allocated to a water right is 

determined by the amount of water pumped during a perfection period as long as it was deemed 

reasonable and beneficial use (Peck et al. 1988). To be authorized, a water right also needs to not 

impair the ability of neighboring senior water rights to exercise their right.2 Water rights in Kansas 

developed rapidly between 1950 and 1980 (Sampson and Perry 2019). Development of water 

rights slowed dramatically after 1980 due to the introduction of Groundwater Management 

Districts that implemented well-spacing requirements and closed areas to further water right 

development (Edwards 2016). While it became difficult to acquire new water rights after 1980, 

existing irrigators could adjust the area irrigated within the maximum area of the authorized place 

of use. 

The first change in irrigation technology that we study is the transition from using gravity-

driven systems, referred to as flood or furrow irrigation, to a pressurized system involving a center 

 
2 See https://agriculture.ks.gov/divisions-programs/dwr/water-appropriation/new-applications-and-permits. 
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pivot. In Kansas, furrow irrigation is the most common type of gravity-fed irrigation and 

groundwater is typically transported from the well to the uphill end of furrows in pipe or tubing 

rather than open channels (United States Department of Agriculture 2019). As such, the principal 

water losses for furrow irrigation systems in our context would be caused by runoff, evaporation 

as water travels within furrows, or deep-percolation. Center pivot systems pump pressurized water 

through a series of sprinkler heads, or nozzles, arranged along a rotating length of pipe suspended 

above the crops. In addition to run-off and deep percolation, center pivot systems are also subject 

to water losses due to drift, when wind carries the water away from its intended target, and 

evaporation occurring in the air or canopy (Rogers, Alam, and Shaw 2008). 

 Despite these additional sources of loss, there are two advantages of pressurized center 

pivot systems worth emphasizing in our research context. First, the potential application 

efficiency—the fraction of applied water which is stored in the root zone—for a typical center 

pivot irrigation system is between 75% and 85% and for a furrow irrigation system it ranges from 

45% to 65% (Irmak et al. 2011).  Second, as they do not rely on gravity to convey water, center 

pivot systems can irrigate areas where the topography would make gravity-fed irrigation 

impossible or prohibitively expensive (NRCS 1997). On the other hand, center pivot systems 

typically irrigate a circular area that could be smaller than a rectangular area irrigated by a furrow 

system. Therefore, the change in area from a conversion is ambiguous. 

The second transition in irrigation technology, adoption of LEPA devices, involves 

modifications to center pivot irrigation systems which improve the application efficiency of the 

system and reduce the necessary operating pressure. The nozzles in a LEPA system hang below 

the main pipe of the center pivot system, or even within the crop canopy, and thereby reduce 

evaporative losses by dispensing water closer to the root zone. As a result, installing LEPA 
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devices can increase the potential application efficiency of a center pivot system to be between 

80% and 90% (Irmak et al. 2011). In addition, as highlighted in Pfeiffer and Lin (2014), the 

operating pressure required for LEPA devices is as little as one eighth that of other center pivot 

sprinkler configurations (Rogers, Alam, and Shaw 2008). As such, the marginal cost of applying 

a unit of groundwater decreases due to a reduction in fuel costs.  

While each of the irrigation system conversions that we study result in an increase in 

application efficiency, it is important to recognize that there are other factors that could also affect 

water use. Each conversion leads to a decrease in the cost of applying water and the configuration 

of the system affects the area irrigated. Technology conversions in different contexts that affect 

efficiency (e.g., appliances and transportation) also likely affect behavior in ways other than 

efficiency that are important to recognize.  

3 Data 

3.1 WIMAS 

Historical water use data are obtained from the Water Information Management and 

Analysis System (WIMAS), a joint effort by the Kansas Department of Agriculture, Division of 

Water Resources and Kansas Geological Survey (Wilson et al. 2005). Water right records within 

WIMAS contain annual reported water withdrawals, irrigated acreage, the point of diversion 

where water is withdrawn, the crop grown, and the irrigation technology, along with other data. 

The outcome variable we use to measure irrigation intensity, depth applied (i.e., total 

withdrawals per acre), is constructed by dividing total withdrawals by acres irrigated.  

Within WIMAS, multiple water rights can be associated with a single well, or vice versa, 

so we aggregate water use to a unit of observation called the water right group (Rosenberg 

2020). Specifically, we begin by matching water rights and their associated points of diversion to 
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their place of use—the specific tract where the water right is authorized to be applied. Then, we 

find overlaps between places of use based on shared points of diversion or shared water rights to 

define the water right groups. As such, water right groups are networks of water rights sharing 

common points of diversion or places of use.3 Using water right groups as the unit of aggregation 

avoids the concern of water use being shuffled between multiple water rights within the same 

place of use and thus allows us to accurately track changes in water withdrawals through time, 

even if the related water rights or points of diversion change for administrative reasons.  

As WIMAS is comprised of data reported by individual irrigators, there are oddities and 

extreme values within some records. To prevent these values from distorting our results, we 

remove observations that have total withdrawals, acres irrigated, or depth applied greater than 

the 99th percentile after performing the aggregation to the water right group level. Additionally, 

we remove observations with a reported quantity for withdrawals but zero reported irrigated 

acres or vice versa. Most of the time irrigation technology is not reported when withdrawals or 

acres irrigated are equal to zero. There are a few times when the irrigation technology is reported 

but, in these cases, we replace the technology as missing to be consistent. The number of water 

right groups and observations removed by each of these subsequent filters is detailed in 

Appendix A. Summary statistics for the final dataset are presented in table 1. Figure 1 illustrates 

the variation of the three dependent variables and the adoption of irrigation technologies over 

time. We use “traditional center pivot” to refer to a center pivot system without LEPA. 

 

Table 1: Summary statistics for water right groups with flood, traditional center pivot, or LEPA 
irrigation systems across all years from 1991 to 2019. 

 
3 Within WIMAS, records are uniquely identified by a combination of the water use year, water right details, 

and well information called a “wuadet_key.” In the dataset containing all three irrigation technologies, 67% of the 
water right groups have a single “wuadet_key” value in all years. Another 19% of water right groups have two or 
fewer “wuadet_key” values in all years, 7% have 3 or fewer in any year, and the remaining 7% have 4 or more.  
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Variable N Mean Median Std. Dev. Min. Max. 
Total withdrawals (AF) 181,052 208.06 156.67 190.18 0.01 1,431.00 

Flood irrigation 34,476 178.69 107.90 204.86 0.01 1,426.96 
Traditional center pivot 36,232 201.60 155.58 181.04 0.02 1,427.24 
LEPA irrigation 110,344 219.36 166.00 187.25 0.01 1,431.00 

Irrigated acres 181,052 185.01 130.00 138.02 1.00 910.00 
Flood irrigation 34,476 152.98 111.00 142.90 1.00 910.00 
Traditional center pivot 36,232 179.42 130.00 123.76 4.00 910.00 
LEPA irrigation 110,344 196.85 130.00 139.20 1.00 910.00 

Depth applied (ft) 181,052 1.11 1.10 0.49 0.00 2.47 
Flood irrigation 34,476 1.12 1.08 0.56 0.00 2.47 
Traditional center pivot 36,232 1.10 1.09 0.49 0.00 2.47 
LEPA irrigation 110,344 1.11 1.10 0.46 0.00 2.47 

       
Soil variables       

Sand content (%) 181,052 36.17 19.68 28.13 5.23 97.35 
Silt content (%) 181,052 41.63 51.66 21.46 0.60 71.11 
Available water  
  capacity (cm/cm) 

181,052 0.17 0.18 0.04 0.05 0.22 

Pre-development aquifer 
variables 

      

Specific yield 181,052 16.75 17.00 3.86 0.00 25.00 
Depth to water 181,052 65.43 53.99 56.12 0.00 260.19 
Saturated thickness 181,052 153.64 130.99 113.92 -0.16 610.69 
Hydraulic conductivity 181,052 82.09 97.00 26.03 0.00 135.00 

Weather variables       
Preseason  
  precipitation (in.) 

181,052 4.79 4.30 2.46 0.33 15.20 

Growing season  
  precipitation (in.) 

181,052 15.37 14.73 5.18 2.62 38.67 

Preseason  
  evapotranspiration (in.) 

181,052 10.72 10.73 1.06 7.21 13.85 

Growing season 
  evapotranspiration (in.) 

181,052 31.00 30.98 1.86 26.16 37.22 

Note: “Preseason” includes the months from January to April, and “growing season” contains 
from May to September. 
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Figure 1: Average total withdrawals, acres irrigated, depth applied, and mean share of water right 
groups by irrigation system over time.  
 

3.2 Soil, weather, and aquifer characteristics 

Monthly data for cumulative precipitation, average maximum temperature, and average 

minimum temperature are from the Parameter-elevation Regressions on Independent Slopes 

Model repository maintained by Oregon State University (PRISM Climate Group 2014). We 

calculate the mean value of each variable for every Public Land Survey System (PLSS) section 

(roughly 1 square mile) in Kansas and match to water right groups by place of use. Reference 

evapotranspiration data are generated with water right group specific data on average 

temperature, latitude, and elevation using the Penman-Monteith equation as outlined in Allen, 
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Pereira, and Smith (1998).4 For the precipitation and evapotranspiration covariates, we aggregate 

the values into “preseason” (January-April) and “growing season” (May-September) variables.  

The elevation data used in the Penman-Monteith equation are from the Soil Survey 

Geographic (SSURGO) Database along with other time invariant soil characteristics including 

the water holding capacity, soil texture, and hydraulic class (Soil Survey Staff 2022). Soil 

characteristics reflect the dominant soil type at the section level and are matched to water right 

groups’ respective places of use. Finally, time invariant hydrologic characteristics of the High 

Plains Aquifer at the section level are obtained from the Kansas Geological Survey and include 

the predevelopment saturated thickness, predevelopment depth to groundwater, specific yield, 

and hydraulic conductivity. Summary statistics for both the time varying and invariant covariates 

are displayed in the bottom section of Table 1.  

 

3.3 Creation of technology adoption sub-samples 

To isolate the effect of each respective technology adoption, we create two sub-samples of 

our panel dataset. The first contains irrigators who use flood, traditional center pivot, or LEPA 

irrigation and allows us to isolate the effect of transitioning from flood irrigation to a center pivot 

system. For the second, we only include irrigators using traditional center pivot or LEPA 

irrigation, so we can estimate the effect of adopting LEPA.  

The difference-in-differences identification strategy and estimation approach we employ, 

detailed in the next section, requires modifications to these sub-samples to ensure we construct 

 
4 We construct reference evapotranspiration data using temperature data from PRISM, as opposed to using 

remote-sensed or local measured values, to avoid introducing the endogenous relationship between water use and 
evapotranspiration. So long as the temperature data from PRISM are unaffected by irrigation behavior, our measure 
of reference evapotranspiration is independent of irrigation behavior. In contrast, actual evapotranspiration depends 
on the crop and the amount of water applied.  
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appropriate counterfactual outcomes using the behavior of irrigators who do not adopt the new 

technology. For both sub-samples, we remove water right groups that have already adopted the 

more efficient technology before the first year of the sub-sample to preclude the use of faulty 

controls. For the same reason, we do not include water right groups who changed technologies 

during the sub-sample time period if we do not observe the change occurring between 

consecutive years due to missing data. In these instances, we are unable to determine when the 

transition occurred.  

As our empirical approach requires discrete treatment categories, we remove any water 

right groups using multiple technologies in a single year. Finally, we remove water right groups 

that report adopting the new technology but then revert to the older technology at a later point in 

time.5 Most of the transitions from flood to center pivot occurred in the 1990s and early 2000s 

(figure A.1). Conversions from flood to traditional center pivot systems devices are concentrated 

between 1992 and 1997, while conversions from flood to LEPA irrigation are more uniformly 

distributed throughout the time series with larger adoption cohorts between 1997 and 2002 

(figure A.2). Conversions from traditional center pivot to LEPA are largest between 1997 and 

2005 (figure A.1).   

To estimate the effect of transitioning from flood to center pivot irrigation, we exclude 

groups that never adopt center pivot irrigation by 2019. As shown in figure 2, there are few 

irrigators remaining that use flood irrigation. As such, these irrigators who remain using flood 

irrigation may be systematically different from those that previously adopted center pivot 

 
5 For example, some groups report switching back to flood irrigation after converting to center pivot. 

Converting a technology involves large, fixed costs so it is highly unlikely that a farmer would revert back to an older 
technology. There are a couple of reasons why reverting might get reported. One reason is that it could be a reporting 
error. A second reason is that different portions of the water right group that have different technologies could have 
been irrigated in different years. For example, field A has flood technology and field B has center pivot but both fields 
are in the same water right group. If the farmer alternates between irrigating field A and B in different years, then it 
will give the false appearance of technology conversion.  
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irrigation, violating the conditions necessary for our identification strategy. In addition, we are 

unable to estimate the impact of adopting center pivot irrigation for water right groups who adopt 

from 2016 onward using our preferred estimator due to computational limitations with small 

cohorts.6 As such, we remove the years from 2016 onward for the flood to center pivot transition 

(Table 2). The final unbalanced panel dataset contains 1,628 water right groups in total, 29% of 

the water right groups are observed every year and 90% have at least 15 years of data. 

 

 

Figure 2: Percent of Kansas’ total irrigated acreage using irrigation technologies over time.  

 

For the conversion from traditional center pivot to LEPA sub-sample, we use the entire 

sample period 1991-2019 and include water right groups that never adopted LEPA since about 

11% of acres are still irrigated by traditional center pivots in 2019. The final unbalanced panel 

for the LEPA adoption sub-sample contains 3,989 water right groups (table 2). Of the water right 

 
6 The R package we use is limited in its estimation of treatment effects for small cohort sizes, and the 2016 

to 2019 cohorts contain only 32 water right groups in total (Callaway and Sant’Anna 2021). 
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groups in the LEPA adoption sub-sample, 42% are observed in all 29 years and 90% have at 

least 15 years of data. The percent of irrigators in each treatment group for both sub-samples is 

depicted in figure A.3. 

 

Table 2: Sub-sample characteristics for water right groups in each technology transition.  

 Technology transition panel datasets 

Variable 
Flood adopting traditional 

center pivot or LEPA 
Traditional center pivot 

adopting LEPA 

Years included 1991-2015 1991-2019 

Water right groups adopting 
within sub-sample years 

1,596 

 

3,716 

Water right groups adopting 
after sub-sample years 

32 N/A 

Never-adopter water right 
groups  

Excluded 

 

273 

 

4 Empirical analysis 

We use a Difference-in-Differences (DID) approach to identify the effect of the two 

technology transitions on irrigators’ groundwater use. In essence, the DID approach compares 

the evolution in irrigation behavior over time of water right groups who adopt the new 

technology, the treated, to those who do not, the controls. The parallel trends assumption for this 

approach requires that the change in groundwater use for adopting and non-adopting water right 

groups must evolve identically over time in the counterfactual scenario wherein no one adopts 

the new technology.  

The conventional approach to this type of analysis was to estimate a two-way fixed 

effects (TWFE) model with time-varying covariates. However, the staggered nature of irrigation 
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technology adoption and the possibility of heterogeneous treatment effects in our empirical 

setting suggest TWFE could be biased. As demonstrated by Goodman-Bacon (2021), TWFE 

estimation generates a weighted average of simpler two-by-two difference-in-differences (DD) 

estimators including two potentially erroneous comparisons between early and later adopters. For 

example, consider the case where adoption of an irrigation technology decreases groundwater 

use, and the treatment effect becomes more negative over time. In this case, when late adopters 

first adopt, they decrease water use less than early adopters. This causes TWFE to be biased 

upward since TWFE uses early adopters as a faulty control comparison for late adopters. We 

depict an illustrative scenario with a Monte Carlo simulation in appendix B where TWFE 

suggests adoption of a technology causes Jevon’s paradox, despite the exact opposite being true.7 

To avoid improper comparisons of late and early adopters, we employ the estimation 

strategy described in Callaway and Sant’Anna (2020). An additional advantage of the Callaway 

and Sant’Anna’s (2020) approach is the use of a doubly robust estimator, indicated by the 

subscript 𝑑𝑟 in subsequent equations, meaning the treatment effect is recovered if either the 

treatment effect evolution or the propensity score models are properly specified (Sant’Anna and 

Zhao 2020). We use the superscript 𝑛𝑦 to indicate we use the specifications in Callaway and 

Sant’Anna (2020) that include “not-yet-treated” observations, pre-adoption data in our context, 

as controls. As mentioned in Section 3, we exclude the “never-treated” water right groups for the 

transition from flood to center pivot irrigation, but we include the “never-treated” units for the 

conversion from traditional center pivot to LEPA irrigation.   

 
7 While previous studies have described the bias of two-way fixed effects in detail (Borusyak 2018; de 

Chaisemartin and D’Haultfoeuille 2020; Sun and Abraham 2021; Goodman-Bacon 2021), our purpose in providing 
this example is to illustrate the bias in the context of irrigation technology adoption and water use with plausible 
parameter values. 
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 To explain our estimation approach, we begin by introducing some notation. Let 𝑌 , ,  

denote the outcome of interest (i.e., withdrawals, acres irrigated, or depth applied) for water right 

group 𝑖 in adoption cohort 𝑔 in year 𝑡, 𝐷 , ,  is the binary variable indicating if unit 𝑖 in cohort 𝑔 

has adopted the new technology at time 𝑡, and 𝑍 ,  denotes time-invariant soil and aquifer 

characteristics. Cohorts are comprised of all water right groups who first adopt the new irrigation 

technology in year 𝑔. The approach in Callaway and Sant’Anna (2020) produces unbiased 

estimates of the average treatment effect on the treated (ATT) by estimating and aggregating 

group-time average treatment effects. In our context, each group-time average treatment effect, 

𝐴𝑇𝑇(𝑔, 𝑡), represents the average effect of adopting the more efficient irrigation technology at 

time 𝑡 for the cohort of individuals who first adopted the technology in year 𝑔.  

Constructing the 𝐴𝑇𝑇 (𝑔, 𝑡) estimator is a two-step process beginning with estimating 

the population outcome regression, 𝑚 , , (𝑍 , ), and the propensity score, 𝑝 , , (𝑍 , ). Letting 𝑁 

indicate the total sample size and defining 𝐺 ,  as an indicator variable equal to one if irrigator 𝑖 

is first treated in period 𝑔, the parametric estimators of the outcome regression and propensity 

score functions, 𝑚 , , (𝑍 , ; 𝛽 , , ) and �̂� , , 𝑍 , ; 𝜋 , ,  

𝐴𝑇𝑇 (𝑔, 𝑡) = ∑ 𝑤 − 𝑤
,

𝑌 , , − 𝑌 , , − 𝑚 , 𝑍 , ; 𝛽 , ∀          (1) 

where 

𝑤 =
,

∑ , ∀  

;  𝑤
,

=

, , , ; , , , , ,

, , , ; , ,

∑
, , , ; , , , , ,

, , , ; , ,
 ∀ 

. 

 In equation 1, the doubly robust specification of Callaway and Sant’Anna’s (2020) 

estimator displays two methods of addressing covariate-driven non-parallel trends. The first 

method, subtracting 𝑤 ,  from the population weight, demonstrates the inverse probability 
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weighting approach to DID settings which compares the outcomes of treatment and control 

groups using the probability of treatment conditional on covariates (Abadie 2005). The second 

method, subtracting 𝑚 , , (𝑍 , ; 𝛽 , , ) from the outcome evolution, uses the outcome evolution 

for control group observations with matching time-invariant covariates to address differential 

trends in the outcomes (Heckman, Ichimura, and Todd 1997).  

For our estimations, we use the default option for Callaway and Sant’Anna's (2021) did R 

package which employs the inverse probability tilting estimator of Graham, Campos De Xavier 

Pinto, and Egel (2012) to estimate propensity scores and weighted-least squares to estimate the 

outcome regressions. To account for multiple hypothesis testing, we use the simultaneous 

inference procedure described in Callaway and Sant’Anna (2020). Specifically, we use cluster 

bootstrap standard errors with 1,000 iterations to generate simultaneous confidence bands at the 

𝛼 = 0.05 level. The covariates we include in 𝑍 ,  are the pre-development saturated thickness 

and hydraulic conductivity of the aquifer, the available water capacity and soil texture, and the 

pre-treatment acre-feet the water right group applied in the first year they appear in each sub-

sample dataset.  

 Once estimated, the individual 𝐴𝑇𝑇 (𝑔, 𝑡) estimates must be aggregated to generate an 

estimate of the average treatment effect, 𝛿 . For a given value of 𝑔, we first create the following 

average treatment effect for each cohort, 𝛿 (𝑔), by averaging the treatment effects across all 

values of 𝑡 ≥ 𝑔 and dividing by the maximum number of periods an irrigator in group 𝑔 could 

be treated for:  

𝛿 (𝑔) = ∑  𝐴𝑇𝑇 (𝑔, 𝑡).            (2) 

Then, we take a weighted average of the 𝛿 (𝑔) values across all cohorts to produce the final 

estimate of the ATT. Letting 𝑁  indicate the number of observations across all irrigators in 
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cohort 𝑔, the weights for this final aggregation are the probabilities of belonging to a given 

cohort conditional on being in a treated cohort,  

 𝛿 =
∑

∑ 𝑁 ∗ 𝛿 (𝑔).            (3)  

We employ one other aggregation so we can plot event-study style estimates of dynamic 

treatment effects. In the following equation, we let 𝑙 be the number of years since an irrigator 

adopted the new technology. Additionally, we use 𝑁 ,  to indicate the number of irrigators in 

cohort 𝑔 who are observed for 𝑙 periods after the new technology is adopted. The following 

equation for 𝛿 (𝑙) estimates the effect of 𝑙 years using the new technology: 

𝛿 (𝑙) =
∑ ,  

∑ 𝑁 , ∗ 𝐴𝑇𝑇 (𝑔, 𝑔 + 𝑙)∈ .        (4) 

There are five necessary assumptions for the individual 𝐴𝑇𝑇 (𝑔, 𝑡) estimates and the 

aggregations to identify their respective effects. The first two assumptions concern the design of 

the pseudo experiment, imposing restrictions on the treatment variable and sampling process. 

First, treatment must be irreversible, meaning no irrigator can adopt the new technology and then 

switch back to the earlier technology in a later time period. We are confident this assumption 

holds for our sample because the technology transitions involve substantial costs and—as 

mentioned in Section 3.3—we removed water right groups that reported reverting back to the 

prior technology. Second, the panel dataset must be representative of the overall population. As 

the WIMAS dataset we employ is comprised of records that all irrigators in Kansas are required 

to provide on their annual groundwater use, and flow meters were required for all wells 

beginning in 2000, we are also confident this second assumption holds (Kansas Statutes 

Annotated 1988; Kansas Administrative Regulations 2000).  
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The next three assumptions, the identifying assumptions, are concerned with establishing 

conditional parallel trends between adopters and never adopters. The third assumption requires 

the temporal extent of behavior in anticipation of adopting the new technology to be pre-

specified. We assume there is no anticipation behavior in our context because groundwater rights 

in Kansas ascribe irrigators an annual quantity of water which is unaffected by their use in prior 

years, so there is no strategic reason to adjust water use before adoption. The fourth assumption 

requires the expected counterfactual outcome evolution for adopters to equal the expected 

outcome evolution of irrigators who have not yet adopted by the end of the period in question, 

where both outcome evolutions are conditioned on pre-treatment covariates. Finally, the 

“overlap” assumption is required to take advantage of the doubly robust version of Callaway and 

Sant’Anna’s (2020) estimator and is commonly employed in the difference-in-differences 

literature (Sant’Anna and Zhao 2020). In essence, the overlap assumption requires there to be 

adopters and not-yet or never adopters with similar propensity scores so that the control group’s 

outcome evolution is truly reflective of the adopters’ counterfactual outcome. As outlined above, 

the 𝛿  estimator matches water right groups based on pre-treatment covariates, and then uses 

these matched controls to generate counterfactual outcomes.  

To provide evidence that these three identifying assumptions hold, we perform the pre-test 

from Callaway and Sant’Anna (2020) to determine whether the estimated effects of adoption in 

pre-adoption years are jointly significantly different from zero. While this pre-test does not 

ensure conditional parallel trends holds with certainty during the treatment period (Roth 2022), it 

does provide an indication of whether treated and control water right groups behaved similarly 

prior to adoption. We perform the test for multiple intervals within each sub-sample due to the 

increased likelihood of failing the pre-test due to random chance when a greater number of pre-
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treatment periods are added even if the conditional parallel trends assumption is satisfied (Roth 

2022). The pre-test results for the flood to center pivot and traditional center pivot to LEPA 

transitions are displayed in tables D.1 and D.2 within Appendix D. For both transitions, the pre-

test passes for all three dependent variables for the period running from 1996 through 2005. In 

addition, the pre-test passes in most of the five-year windows spanning these two transition’s full 

time series. The exceptions to this statement are the earliest periods from 1991 to 1996.  

5 Results and Discussion 

First, we show the average treatment effects for each technology change on total 

withdrawals. We also decompose the effect on total withdrawals into the effect on acres irrigated 

(i.e., extensive margin) and depth applied (i.e., intensive margin). Then, we present the dynamic 

treatment effects and discuss the adaptations in irrigation behavior they represent. Next, we 

include a series of checks to illustrate the robustness of our results. Finally, we show how the 

dynamic treatment effects we find create biased TWFE estimates and compare our results to 

those from prior studies of the effect of LEPA adoption. Note, for all inferences presented in the 

results section, we cluster at the water right group level to address issues of heteroskedasticity 

and autocorrelation between years. 

 

5.1 Average treatment on the treated estimates 

The overall average treatment effect estimates for each transition are plotted in figure 3 as 

a percent change relative to the mean values of the dependent variables in the pertinent sub-

sample. Note that the impact on total withdrawals does not equal the product of the impact on 

acres irrigated and depth applied because depth-applied values cannot be generated when there 

are zero irrigated acres reported. Figure 3 shows both the preferred 𝛿  and biased 𝛽  



21 
 

estimates to visually compare the results.8 In this sub-section, we focus on the 𝛿  estimates 

from our empirical strategy in the previous section. We discuss the 𝛽  estimates in a later 

sub-section. Additional tables of results are provided in Appendix C.9  

The estimated effects of changing from flood to center pivot irrigation on acre-feet 

withdrawn, irrigated acres, and depth applied are displayed in the top row of panels in figure 3. 

The preferred 𝛿  estimates for withdrawals and acres irrigated are statistically insignificant 

increases of 1.5% (2.8 acre-feet) and 6.2% (9.1 acres), respectively. However, this result should 

not be interpreted as an expansion of irrigated acres, but rather avoiding the loss in irrigated 

acres that would have occurred with flood irrigation (see figure A.4).10 There are two main 

reasons that irrigated acres would have decreased if remaining in the flood system (O’Brian et al. 

2000; Peterson and Ding 2005). First, aquifer levels were declining in the region resulting in a 

slower rate of water extraction at a higher marginal cost. The slower rate of extraction decreases 

crop yields, especially for inefficient irrigation systems. Second, flood is a labor-intensive 

technology and labor costs were rising. Our results indicate that water right groups were able to 

maintain greater irrigated acreage after adopting center pivot irrigation by reducing the depth 

applied at the intensive margin. We find a statistically insignificant 5.0% decrease in depth-

applied due to irrigators switching from flood to center pivot. Note, however, engineering 

 
8 We estimate a regression specified as 𝑌 , , = 𝜆 , + 𝛾 + Φ𝑋 , , + 𝛽 𝐷 , , + 𝑢 , , , where 𝜆 ,  and 𝛾  

are fixed effects for water right groups and years respectively, and 𝑋 , , , includes pre-season and growing season total 
precipitation and evapotranspiration.  

9 Table C.1 contains the estimated average treatment effects from figure 3 expressed in levels for each 
dependent variable. Tables C.2 and C.3 contain the 𝛿 (𝑔) estimates of cohort-specific average treatment effects from 
equation 3. Finally, in table D.3, we report the ATT estimates after limiting each technology transition sub-sample to 
the period in which the parallel trends pre-test passes. 

10 Figure 1 shows that the average acres irrigated by water right groups with a flood system decreased by 
more than half from about 200 acres in 1992 to 83 acres in 2019. This could occur if water right groups with fewer 
acres were the last to adopt center pivots, but that does not appear to be the only driver since irrigated acres for water 
groups with flood decreased over time before converting to center pivot (Figure A.4). 
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estimates suggest a 10-40% increase in application efficiency for the conversion from flood to 

center-pivot irrigation.  

We perform two additional analyses of the flood to center pivot conversion to understand 

the mechanisms driving our ATT results. First, we assess whether differences in behavior 

between water right groups adopting traditional center pivot systems versus those directly 

adopting center pivot with LEPA affects our results (table C.4). While the coefficients for the 

two conversion types have identical signs to those described above, the increase in irrigated acres 

for the conversion from flood to a center pivot with LEPA is much larger and statistically 

significant. However, the treatment effects were larger for later cohorts when there was a greater 

pre-treatment decline in irrigated acreage (table C.2). So, the larger effect of flood to center pivot 

with LEPA may simply be due to a greater number of these conversions occurring later in the 

time series (figure A.2).  

Second, we use the crop data in the WIMAS records to estimate the effect of switching to 

center pivot irrigation on the fraction of water right groups’ irrigated acreage planted to five 

crops: alfalfa, corn, soybeans, soy, and wheat. We find statistically significant evidence of water 

right groups planting more corn and less sorghum after adopting center pivot irrigation (table 

C.5). After converting to center pivot irrigation, irrigators were able to continue growing the 

comparatively more water-intensive crop, corn, while those who remained in flood irrigation 

planted the more drought resistant alternative, sorghum. Even though irrigators planted more 

water-intensive corn after adopting center pivot irrigation, they still decreased the average depth 

applied. 

The bottom row of panels in figure 3 depicts the average treatment effect results for the 

transition from traditional center pivot to LEPA irrigation. For all three dependent variables, the 
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𝛿  estimates are negative and statistically insignificant. We estimate a 3.5% (6.8 acre-feet) 

reduction in groundwater withdrawals following adoption of LEPA with our preferred estimator. 

The effects of LEPA adoption on irrigated acreage and depth-applied are smaller reductions of 

1.2% (2.1 acres) and 1.7% (0.02 feet) respectively.11 While statistically insignificant, the 

negative treatment effects estimated for withdrawals and depth-applied are consistent with 

expectations that increases in application efficiency translate into reductions in groundwater use 

and do not support the conclusion that LEPA adoption leads to Jevon’s paradox. We also find no 

significant effects of LEPA adoption on the crop choice (table C.5). But, similar to the 

conversion from flood to center pivot irrigation, the estimated reductions in withdrawals and 

depth-applied fall short of expected savings given the 5-15% increase in application efficiency 

predicted by engineering estimates.  

  

 
11 In contrast to the transition from flood to center pivot irrigation, the pre-treatment trajectories depicted in 

figure A.5 for the LEPA adoption transition are closely centered around zero. As such, these estimates represent the 
effect of adopting LEPA relative to a counterfactual where irrigation behavior remained roughly constant. 
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Figure 3: Effect of adopting each technology for our preferred estimator from Callaway and 
Sant’Anna (2020), 𝛿 , and two-way fixed effects, 𝛽 . Treatment effects are expressed as a 
percent change relative to the sample mean of each dependent variable. Note, due to the 
staggered adoption of both irrigation technologies, TWFE estimates may be biased. 
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5.2 Dynamic treatment effects 

We can understand how irrigators adjust to each new irrigation technology by examining 

how the treatment effects change over time. Figures 4 and 5 display the dynamic treatment 

effects for the transitions from flood to center pivot irrigation and from traditional center pivot to 

LEPA irrigation. As in figure 3, the dynamic effects are expressed as a percent change relative to 

the mean values of the dependent variables in the pertinent sub-sample. Similarly, we discuss the 

preferred 𝛿 (𝑙) (equation 4) estimates in figures 4 and 5 in this sub-section and address the 

biased 𝛽 (𝑙) estimates later.12 Additional tables of results are provided in Appendix C.13  

The instantaneous effect of converting from flood to center pivot irrigation, the 𝛿 (𝑙) 

estimate at time 𝑙 = 0, is a statistically significant 9.9% (18.9 acre-feet) reduction in 

groundwater withdrawals (top panel of figure 4). After the initial reduction in withdrawals, the 

treatment effect steadily trends upward. During the first decade after adoption, the negative or 

near zero 𝛿 (𝑙) estimates indicate that groundwater withdrawals among adopters of center pivot 

irrigation were less than or equal to what they would have been with flood irrigation. Then in 

subsequent years, adoption of center pivot irrigation resulted in greater withdrawals, which 

should be interpreted as a smaller reduction in withdrawals over time than would have occurred 

with flood irrigation.  

Irrigated acreage was 4 to 8 percent greater due to the adoption of center pivots during the 

decade after adoption (middle panel of figure 4). Despite declining groundwater resources, 

 
12 We use 𝛽 (𝑙) to indicate the effect of changing technologies at time 𝑙 relative to adoption estimated 

using the following regression 𝑌 , , = 𝜆 , + 𝛾 + Φ𝑋 , , + ∑ 𝛽 𝑙𝑒𝑎𝑑
, ,

+ ∑ 𝛽 (𝑙𝑎𝑔 ) , , + 𝑢 , , , 

where 𝑙𝑒𝑎𝑑  is the binary variable indicating if group 𝑔 is 𝑗 years before changing technologies in year 𝑡 and 
(𝑙𝑎𝑔 ) is the binary variable indicating if group 𝑔 is 𝑘 years after changing technologies in year 𝑡. 

13 The results depicted in figures 4 and 5 are also presented in levels for each dependent variable in Tables 
C.6 and C.7.  
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adopters of center pivot irrigation maintained greater irrigated acreage because of the increase in 

application efficiency. So, we find that adoption of center pivot systems prolonged irrigated 

agriculture. The increased application efficiency also allowed them to make significant 

reductions in depth-applied without reducing the water available to their crops (bottom panel of 

figure 4).  

For the transition from traditional center pivot to LEPA irrigation in figure 5, the 𝛿 (𝑙) 

estimates indicate water right groups decrease their groundwater withdrawals starting around 7 

years after adoption. The 𝛿 (𝑙) estimate 24 years after adopting LEPA is a statistically 

significant 19% (38 acre-foot) decrease in groundwater withdrawals (top panel of figure 5). The 

𝛿 (𝑙) estimates for dynamic effects on acres irrigated are all statistically insignificant and they 

are consistently near zero for 20 years after LEPA adoption (middle panel of figure 5). The 

𝛿 (𝑙) results for depth-applied are also statistically insignificant but depict a similar downward 

trend over time as withdrawals (bottom panel of figure 5).  

For both technology conversions studied here, the dynamic treatment effects we find reveal 

how irrigators adjust to changes in irrigation technology over time. For the conversion from 

flood to center pivot irrigation, we observe large reductions in withdrawals immediately after the 

technology transition. Due to the increase in application efficiency, irrigators who adopted center 

pivot irrigation could decrease depth-applied and avoid reducing irrigated corn acreage. In 

contrast, there are no perceptible changes in irrigators’ behavior immediately after adopting 

LEPA. There is evidence that withdrawals decreased for LEPA through the intensive margin 

about 7 years after adoption, but these effects are mostly statistically insignificant.  
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Figure 4: Effect of changing from flood to center pivot irrigation at time 𝑙, where 𝑙 is years 
relative to when center pivot irrigation is first adopted. Effects are expressed as a percent change 
relative to the sample mean of each dependent variable. Error bars represent the 95% confidence 
interval, with dotted lines indicating the confidence interval extends beyond the y-axis range.   



28 
 

 

Figure 5: Effect of changing from traditional center pivot to LEPA irrigation at time 𝑙, where 𝑙 is 
years relative to when LEPA is first adopted  Effects are expressed as a percent change relative 
to the sample mean of each dependent variable. Error bars represent the 95% confidence interval, 
with dotted lines indicating the confidence interval extends beyond the y-axis range.     



29 
 

5.3 Robustness checks 

We perform three checks to test our main results are robust to selecting a different time 

period, changes in the composition of adoption cohorts, and an alternative difference-in-

differences estimator. First, we limit our sub-sample to the years from 1996 to 2005 when the 

pre-test passes (tables D.1 and D.2). For the conversion from flood to center pivot, the signs of 

the extensive and intensive margins are the same as our preferred estimate, but they are also 

statistically significant with the limited sample period (table D.3). Dynamic treatment effects 

with the limited sample also indicate an immediate reduction in withdrawals after adoption and 

the effects on irrigated acreage and depth-applied are similar to our preferred estimates (figure 

D.1). For the conversion from traditional center pivot to LEPA irrigation, we also find a 

statistically insignificant impact on all dependent variables with the shorter period, though the 

impact on withdrawals is small (0.9 acre-feet) and positive (table D.3).The downward trend in 

estimated treatment effects for withdrawals and depth applied beginning 7 years after adoption 

remains unchanged along with minimal effects on irrigated acres (figure D.2).  

Our second robustness check is to ensure our dynamic effect results are robust to changes 

in the composition of adoption cohorts occurring between 1996 and 2005. To do this, we 

generate 𝛿 (𝑙) estimates using water right groups with at least 2, 4, 6, and 8 years of data after 

changing technologies. By balancing the sample with respect to “event-time,” we ensure the 

dynamic treatment effect results are driven by changes in behavior and not by missing data 

(McCrary 2007; Bailey and Goodman-Bacon 2015). For the change from flood to center pivot, 

the dynamic treatment effect results after “event-time” balancing also find significant evidence 

of an instantaneous decrease in groundwater withdrawals, retention of irrigated acreage relative 

to flood irrigators, and a persistent reduction in irrigation intensity (tables D.4, D.5, and D.6). For 
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traditional center pivot to LEPA, we find largely insignificant impacts except for some evidence 

of a gradual decrease in depth-applied (tables D.7, D.8, and D.9). 

The third robustness check uses an alternative estimator which accommodates staggered 

adoption and dynamic treatment effect settings described in de Chaisemartin and D’Haultfoeuille 

(2022). We use 𝛿  and 𝛿 (𝑙) to denote estimates for the average and dynamic treatment effect 

versions of the estimator from de Chaisemartin and D’Haultfoeuille (2022) and provide an in-

depth explanation of its formulation and assumptions in Appendix D. The 𝛿  and 𝛿  estimates 

of average treatment effects are similar (figure D.3). For the transition from flood to center pivot 

irrigation, the 𝛿  and 𝛿  estimates have the same signs but the positive effect on acres 

irrigated for the 𝛿  estimate is statistically significant. For the change from traditional center 

pivot to LEPA, the 𝛿  estimates are close to zero for all three outcomes. Dynamic treatment 

effects are also similar between 𝛿 (𝑙) and 𝛿 (𝑙) (figures D.4 and D.5). 

 
5.4 TWFE results and comparison to prior studies of LEPA adoption  

We include a two-way fixed effects specification in our analyses to illustrate the bias 

which can result from applying TWFE in staggered adoption settings. To demonstrate the degree 

to which staggered treatment could bias TWFE results, we perform a Goodman-Bacon 

decomposition on balanced sub-samples using the bacondecomp R package (Flack and Jee 

2020).14 The decompositions were produced without including covariates as controls. For both 

the flood to center pivot and traditional center pivot adopting LEPA transitions, the problematic 

“Later vs. Earlier Treated” comparisons are given at least twice the weight of the “Earlier vs. 

Later Treated” comparisons (table B.1 and figure B.4). Given the robust evidence of dynamic 

 
14 Note, for the flood to center pivot or LEPA transition, we include the “never-treated” water right groups 

and all years from 1991 to 2019 when performing the decomposition. 
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treatment effects, the results from the Goodman-Bacon decompositions show that TWFE 

estimates will be biased. 

Comparing the 𝛿  and 𝛽  estimates of average treatment effects in figure 3 

illustrates how the bias of TWFE leads to erroneous conclusions. In the case of flood irrigators 

switching to center pivot irrigation, the 𝛽  estimate indicates a statistically significant 9.32% 

reduction in withdrawals due to a large decrease in depth applied, whereas the 𝛿  estimate 

indicates a small and statistically insignificant positive effect on withdrawals. The combination 

of an immediate reduction and then an increasing trend in the dynamic treatment effects for 

withdrawals (figure 4) leads to the negative bias of TWFE. TWFE compares late adopters’ 

immediate reductions in withdrawals to increases by early adopters occurring at the same time, 

magnifying the negative 𝛽   estimate of the effect on withdrawals. For the change from 

traditional center pivot to LEPA irrigation, TWFE produces biased estimates of the wrong sign 

that are statistically significant due to the evolution of treatment effect dynamics similar to the 

example in Appendix B. TWFE uses a faulty counterfactual based on the decreasing withdrawals 

of early adopters, creating upward bias in the 𝛽  estimate.  

TWFE estimation of event study specifications are also biased in the staggered adoption 

setting (Sun and Abraham 2021). For the flood to center pivot transition, the 𝛽 (𝑙) estimates 

are consistently negative with a slight downward trend in treatment effects for withdrawals and 

depth applied, while 𝛿 (𝑙) estimates indicate an upward trend and become positive a decade 

after adoption (figure D.4).15 For traditional center pivot to LEPA, the 𝛽 (𝑙) estimates are 

 
15 In comparison to the 𝛽 (𝑙) estimates, the 𝛿 (𝑙) results contain one less estimate during the pre-

treatment period in figures D.4 and D.5. This is because the standard approach outlined in Callaway and Sant’Anna 
(2020) employs long-differencing when estimating pre-treatment outcomes, so the pre-treatment dynamic treatment 
effects can be interpreted as average treatment effects at a given time relative to treatment. In contrast, our TWFE 
event study specification uses the period one year before adoption as a baseline period. 
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generally the opposite sign and trend in the opposite direction when compared to the 𝛿 (𝑙) 

estimates (figure D.5). 

One limitation of our preferred 𝛿  estimates is that the confidence intervals are larger 

than those of the 𝛽  estimates. The 𝛿  estimates are generated using a doubly robust 

estimator, and doubly robust estimators can be less efficient when the outcome regression or 

propensity score components are incorrectly specified (Sant’Anna and Zhao 2020). Indeed, the 

confidence intervals overlap between 𝛿  and 𝛽  in figure 3. No formal statistical test of the 

difference between 𝛿  and 𝛽  estimates has been developed—likely because the TWFE and 

Callaway and Sant’Anna’s (2020) approach recover fundamentally different treatment effect 

parameters. Nevertheless, the difference between our 𝛿  and 𝛽  estimates is economically 

important since the 𝛽  estimates are of the opposite sign, statistically significant, and 

economically important in magnitude. 

Our preferred 𝛿  results differ from previous studies, most likely due to TWFE bias. 

Pfeiffer and Lin (2014) and Li and Zhao (2018) both examine the impact of LEPA adoption on 

groundwater use in Kansas. While neither study uses TWFE as their preferred estimator, both 

studies employ binary indicators of adoption while accounting for unobserved heterogeneity 

across units and time. Pfeiffer and Lin (2014) include unit and time fixed effects in an IV 

estimator. Li and Zhao (2018) include correlated random effects and time fixed effects in a joint 

dynamic estimation strategy. The Goodman-Bacon decompositions, dynamic treatment effects, 

and the difference between our 𝛿  and 𝛽  estimates indicate that the main reason our results 

differ from these previous studies is bias in TWFE estimates.  

Furthermore, our TWFE estimates are similar to results from these previous studies. Our 

TWFE estimates suggest that the effect of LEPA adoption is a statistically significant 3 percent 
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(5.91 acre-foot) increase in groundwater withdrawals (figure 3 and table C.1). Pfeiffer and Lin 

(2014) report a 3 percent increase in withdrawals with their preferred IV specification and with 

TWFE. Li and Zhao (2018) report a 6-7 acre-foot increases in withdrawals for irrigators with 

moderately sized water rights. Differences between the period of analysis also do not explain 

why these previous studies are different from our preferred results because we obtain similar 𝛿  

and 𝛽  estimates with data from the period 1996-2005 that was used by Pfeiffer and Lin 

(2014) (table D.3).  

6 Conclusion 

In summary, we find no evidence of Jevon’s paradox for the two irrigation technology 

changes we investigate in this study. The possibility of such a feedback loop by which increasing 

efficiency encourages additional resource use is certainly cause for concern, but the empirical 

results presented here do not substantiate claims of its occurrence in the context of groundwater 

withdrawals. Instead, our results demonstrate how adoption of efficiency improving irrigation 

technologies enabled irrigators to adapt to changing groundwater conditions over time.  

We find irrigators converting from flood to center pivot irrigation avoided reducing 

irrigated corn acreage by making an immediate reduction in groundwater withdrawals and 

maintaining a persistent reduction in depth applied. While significant, the 10% reduction in depth-

applied we detect during the decade after irrigators adopt center pivot irrigation is the minimum 

increase in efficiency predicted by engineering estimates. The average treatment effects of LEPA 

adoption for withdrawals, irrigated acres, and depth-applied are all indistinguishable from zero. 

Overall, we find that adoption of LEPA resulted in small, marginal adjustments to groundwater 

use consistent with the comparatively smaller increase in application efficiency predicted by 

engineering estimates. 
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Though irrigation technology changes with small efficiency gains may not reduce 

groundwater withdrawals, such technologies may increase the quantity of crops produced per unit 

of groundwater extracted. For example, as is suggested by the dynamic effects of LEPA adoption, 

they may facilitate long-term adaptation that allows producers to maintain yields while reducing 

groundwater use over time. Alternatively, they could increase the yield produced per unit of water 

or mitigate risk by reallocating the same quantity of groundwater to better use in a smaller area.  

There are two main limitations to our study. First, we do not have detailed information on 

the application efficiency for each irrigation system in our dataset. Instead, we use engineering 

estimates of typical ranges to determine whether our estimated changes in withdrawals achieved 

expected savings. Second, in our study context, groundwater is the dominant source of water for 

irrigation and the rate of aquifer recharge is often negligible. Future research is needed to determine 

whether irrigation technology changes produce similar dynamics in contexts reliant on surface 

water resources or with significant return flows. 
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Appendix A - Data processing and sub-sample creation 

The initial dataset, containing water right groups using any irrigation system between 

1991 and 2019, has a total of 18,541 unique water right groups and 444,678 observations. We 

remove 3,653 water right groups because they lack location data, meaning we are unable to 

attach the pertinent pre-development aquifer, soil conditions, or weather variables. An additional 

774 water right groups are removed because they lack data on authorized quantities. Removing 

observations with zero recorded irrigated acres and non-zero values for acre-feet applied does 

not remove any water right groups entirely, but it does drop 495 observations from the sample. 

Removing observations with acre-feet withdrawn, acres irrigated, or depth-applied greater than 

the respective 99th percentile value drops 10,755 observations so there are 352,876 remaining. 

This also reduces the number of water right groups to 14,038. At this point, we remove the 

34,437 observations using any irrigation system aside from flood, center pivot, or LEPA.  

There are 13,632 water right groups and a total of 315,439 observations remaining after 

removing the irrigation technologies not involved in this study. Removing the observations with 

fractional values for the remaining irrigation systems, in contrast, drops only 19 water right 

groups and 7,410 observations. In terms of the number of observations excluded, removing water 

right groups that report multiple transitions into a technology or reverting back from a 

technology is the largest filter we apply to our dataset. After removing water right groups that 

report multiple switches or reversions in irrigation technology, there are 8,562 water right groups 

remaining with a total of 181,052 observations between them.  
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Figure A.1: Number of water right groups changing irrigation technologies in a given year for 
each sub-sample.   
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Figure A.2: Number of water right groups in flood to center pivot sub-sample who change to a 
traditional center pivot irrigation system without LEPA devices and to a center-pivot system with 
LEPA devices by year.   
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Figure A.3: Treatment status of water right groups over time in each technology change sub-
sample. 
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Figure A.4: Boxplots of the changes in three groundwater use outcomes over the pre-adoption 
time period by adoption cohort for the flood to center pivot transition.  
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Figure A.5: Boxplots of the changes in three groundwater use outcomes over the pre-adoption 
time period by adoption cohort for the center pivot adopting LEPA transition. For the never 
adopters, water right groups that never install LEPA devices in our study period, the value from 
the earliest observation is subtracted from that of the latest.  
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Appendix B - Potential TWFE bias and diagnostics 

Consider a collection of irrigators with an opportunity to invest in a more efficient 

technology at any period, 𝑡, before the last period in the panel dataset, 𝑇. For the following 

demonstration, let 𝑇 = 3. We consider three groups (or cohorts) of irrigators indexed by the 

subscript 𝑔 which indicates the first year in which they adopted the new technology. 

Additionally, let the indicator variable, 𝐺 , , indicate the year in which a group is first treated by 

taking a value of one if irrigator 𝑖 is first treated in period 𝑔. The first group of irrigators (i.e., 

early adopters), adopt the more efficient technology at the beginning of the second season such 

that 𝑔 = 2 and 𝐺 , = 1 for irrigators in this group. The second group (i.e., late adopters), adopt 

the more efficient technology at the beginning of the third season meaning 𝑔 = 3 and 𝐺 , = 1. 

The last group of irrigators do not adopt the new technology in any of the observed years (i.e., 

never adopters), so we set their group index to the period after the end of the panel dataset such 

that 𝑔 = 4 and 𝐺 , = 1. 

The outcome of interest, 𝑌 , , , is the acre-feet of groundwater withdrawn by irrigator 𝑖 in 

group 𝑔 for year 𝑡, and the treatment effect we want to recover is the average change in 

groundwater extraction that occurred by time 𝑇 due to irrigators adopting the more efficient 

technology. To express this average treatment effect (𝐴𝑇𝐸), we represent irrigation technology 

adoption status using a binary variable, 𝐷 , , , that takes a value of 1 for every period in which 

the respective irrigator has adopted the newer, more efficient irrigation technology. Then, as each 

observation within a group has an identical treatment sequence, meaning 𝐷 , , = 𝐷 ,  within 

group 𝑔, we represent the treatment path for all groups 𝑔 ∈ 2,3,4 as 𝐷 = {𝐷 , , 𝐷 , , 𝐷 , }. As 

an example, the treatment sequence for the early adopters is written: 𝐷 = {0, 1, 1}. We define 

𝑌 , , (𝐷 ) as the potential outcome for irrigator 𝑖 in group 𝑔 at time 𝑡 if it experienced treatment 
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trajectory 𝐷 , a modification to the potential outcomes framework of Callaway and Sant’Anna 

(2020). Lastly, we define 𝑁  as the number of irrigators in group 𝑔 and 𝑁  as the total number of 

irrigators who adopt the more efficient technology before the end of the panel. We can then 

express the average treatment effect in year 𝑇 as the weighted average of the treatment effects for 

early and late adopters: 

𝐴𝑇𝐸 = 𝐸 𝑌 , , (𝐷 ) − 𝑌 , , (𝐷 ) + 𝐸 𝑌 , , (𝐷 ) − 𝑌 , , (𝐷 )       (B.1) 

However, we cannot compute the 𝐴𝑇𝐸 in equation B.1 because we do not observe the 

counterfactual outcome evolutions 𝑌 , , (𝐷 ) and 𝑌 , , (𝐷 ) for the early and late adopters 

respectively. A difference-in-differences (DD) identification strategy effectively imputes these 

counterfactual outcomes, where adoption of the technology is considered as the “treatment.” The 

crucial parallel trends assumption requires irrigators who adopt the new technology to have the 

same change in the dependent variable as those that do not adopt in the counterfactual scenario 

where the adopters do not actually adopt. Using this assumption, we can rewrite equation B.1 as 

the following difference-in-differences estimand using observable outcomes: 

𝐴𝑇𝐸 = 𝐸 𝑌 , , (𝐷 ) − 𝑌 , , (𝐷 ) − 𝑌 , , (𝐷 ) − 𝑌 , , (𝐷 ) + 𝐸 𝑌 , , (𝐷 ) −

𝑌 , , (𝐷 ) − 𝑌 , , (𝐷 ) − 𝑌 , , (𝐷 ) .           (B.2) 

With the effect of interest defined and identification strategy selected, we now specify the 

groundwater extraction behavior for the three groups and demonstrate how two-way fixed effects 

estimation fails to recover the 𝐴𝑇𝐸. Parameter values are chosen to illustrate that the bias can be 

large enough to reverse the sign of TWFE estimates in a plausible scenario. At time 𝑡 = 1, 

irrigators in the early adopter, late adopter, and control groups apply 160, 165, and 170 acre-feet 

of groundwater each year respectively. Both groups of adopters decrease their groundwater 
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withdrawals by two acre-feet in their first season using the more efficient technology, and the 

early adopters reduce their withdrawals by an additional 18 acre-feet in their second season post-

adoption. The cumulative reduction of 20 acre-feet worth of groundwater represents a 12.5% 

decrease in withdrawals for the early adopters. Lastly, for simplicity, we assume irrigators in the 

early and late adopter groups would have maintained their respective initial levels of 

groundwater use in the counterfactual scenario with no adoption of the more efficient 

technology. Figure B.1 displays the described scenario graphically.  

 
Figure B.1: Hypothetical irrigator water use behavior with two treatment cohorts. The early 
group adopts the new technology in the season preceding time 𝑡 = 2 and the late group adopts 
the technology in the season before time 𝑡 = 3. 

 

As each unique combination of 𝑖 and 𝑔 comprises a panel unit, we can produce the 

following linear unobserved effects panel data model with time and unit fixed effects:  

𝑌 , , = 𝛿 , + 𝛾 + 𝛽 𝐷 , , + 𝑢 , , .           (B.3) 
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We use two-way fixed effects in this hypothetical staggered adoption setting to demonstrate, 

both graphically and numerically, the source of the bias which can occur using such 

specifications. Estimating equation B.3 using fixed-effects estimation produces a biased estimate 

of the 𝐴𝑇𝐸 because of the staggered nature of adoption, even though the parallel trends 

assumption holds. As demonstrated by the Difference-in-Difference Decomposition Theorem of 

Goodman-Bacon (2021), the two-way fixed effects estimator for 𝛽  is a weighted average of 

simpler two-by-two difference-in-differences (DD) estimators including two erroneous 

comparisons between early and later adopters of the new technology. Figure B.2 displays a 

Goodman-Bacon style decomposition of the four difference-in-differences estimates used by the 

two-way fixed effects estimator. In figure B.2, panel (a) is a DD using never-adopters as the 

control for late adopters, panel (b) uses never adopters as the control for early adopters, panel (c) 

uses late adopters as a control for early adopters before late adopters adopt, and panel (d) uses 

early adopters as a control for late adopters when late adopters adopt.  
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Figure B.2: Decomposition of the two-way fixed effects estimator applied to the staggered 
adoption example displayed in figure B.1. Panel (d) displays the problematic use of early 
adopters as the control group for late adopters.  
 

The treatment effect estimated from the DD scenario displayed in panels (a), (b), and (c) 

of figure B.2 recover the true average treatment effect (ATT) for each of the treated cohorts at 

their respective times. However, the treatment effect estimated by the DD in panel (d) is biased 

because it uses the faulty counterfactual outcome produced using the early adopters’ outcome 
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trajectory. In fact, panel (d) gives the illusion of a positive treatment effect because the late 

adopter (i.e., the treated) decreases water use less than the early adopter (i.e., the control). The 

weights for each DD in figure B.2 used to create the two-way fixed effect estimate depend on the 

variance of the fixed-effects-adjusted independent variable and the subsample size in each 

comparison. As such, the size of the early and late adopter groups and the variation in treatment 

effects amongst them will determine how heavily the problematic DD in panel (d) of figure B.2 

is weighted (Słoczynski 2020; Goodman-Bacon 2021). If weighted heavily enough, the 

incorrectly signed DD estimate in this example would suggest Jevon’s paradox occurs for this 

technology adoption, despite the exact opposite being true. 

To numerically demonstrate the bias introduced by improperly applying TWFE 

estimation, we conduct a Monte Carlo simulation of the scenario outlined above and depicted in 

figure B.1. We conduct one thousand replications of the simulation where each observation 

includes a random noise term with mean zero and a standard deviation of one. There are a total 

of 300 irrigators in the panel dataset we simulate with 50 early adopters, 200 later adopters, and 

50 never-adopters. The distribution of estimates for 𝛽  produced by applying the estimating 

equation in equation B.3 to each simulation run are displayed in figure B.3 below. Across the 

1,000 replications, the average of the TWFE coefficients for 𝛽  indicates a one acre-foot 

increase in groundwater withdrawals with a standard deviation of 0.14 acre-feet. However, using 

equation (B.1), the true average treatment effect in year T given these group sizes is 

[140 − 160] + [163 − 165] = −5.6 acre-feet. I  
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Figure B.3: Distribution of estimates produced by applying the two-way fixed effects estimating 
equation in equation (B.3) to the staggered adoption example depicted in figure B.2. 
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Table B1: Bacon-decomposition results for each technology transition and dependent variable 
combination. Technology transition sub-panels were balanced before performing decomposition. 
Flood to center pivot/LEPA transition includes “never-treated” water right groups and all years 
from 1991 to 2019. 
 

 Weight Weighted average 
estimate 

Flood to center pivot/LEPA   
Total withdrawals (AF)   

Earlier vs. Later Treated 0.18 -5.82 
Later vs. Earlier Treated 0.59 -17.91 
Treated vs. Untreated 0.23 -3.28 

Irrigated acres   
Earlier vs. Later Treated 0.18 5.5 
Later vs. Earlier Treated 0.59 2.56 
Treated vs. Untreated 0.23 8.41 

Depth applied (ft)   
Earlier vs. Later Treated 0.18 -0.09 
Later vs. Earlier Treated 0.59 -0.13 
Treated vs. Untreated 0.24 -0.07 

   
Traditional center pivot to LEPA    

Total withdrawals (AF)   
Earlier vs. Later Treated 0.32 3.9 
Later vs. Earlier Treated 0.62 4.61 
Treated vs. Untreated 0.06 20.43 

Irrigated acres   
Earlier vs. Later Treated 0.32 -1.44 
Later vs. Earlier Treated 0.62 -0.4 
Treated vs. Untreated 0.06 -0.58 

Depth applied (ft)   
Earlier vs. Later Treated 0.32 0.03 
Later vs. Earlier Treated 0.62 0.03 
Treated vs. Untreated 0.06 0.09 
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Figure B.4: Bacon decomposition results for the impact of each technology change on the three 
groundwater use variables. Each point represents a two-by-two comparison of two cohorts.  
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Appendix C - Additional results tables 
 
 
Table C.1: Estimated average treatment effect for each technology change in levels for all 
dependent variables using the full time periods for each sub-sample. Asterisks indicates 95% 
confidence interval does not contain zero.  

Technology  
transition 
 

Estimator  Dependent 
variable 

 

 Acre-feet 
withdrawn 

Acres irrigated Depth-applied 

Flood to center 
pivot 

Callaway and 
Sant’Anna (2020) 

2.79 
(-14.66, 20.23) 

10.31 
(-0.55, 21.16) 

-0.06 
(-0.14, 0.03) 

 TWFE -17.90* 
(-22.86, -12.95) 

6.47* 
(2.99, 9.95) 

-0.14* 
(-0.17, -0.12) 

     

Traditional 
center pivot to 
LEPA 

Callaway and 
Sant’Anna (2020) 

-6.78 
(-17.29, 3.72) 

-2.07 
(-8.58, 4.44) 

-0.02 
(-0.06, 0.02) 

 TWFE 5.91* 
(3.33, 8.5) 

-0.47 
(-1.82, 0.87) 

0.03* 
(0.02, 0.04) 
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Table C.2: Cohort-specific average effect of converting from flood to center pivot irrigation 
estimated using Callaway and Sant’Anna (2020) approach and aggregation specified in equation 
2. Asterisks indicates 95% confidence interval does not contain zero.  

Adoption Cohort Acre-feet withdrawn Acres irrigated Depth-applied 
1992 8.11  

(-12.24, 28.47) 
13.12 

 (-5.66, 31.9) 
-0.02  

(-0.18, 0.13) 
1993 -8.69  

(-64.35, 46.97) 
13.27  

(-16.15, 42.69) 
-0.09  

(-0.31, 0.12) 
1994 9.15  

(-29.88, 48.17) 
-6.47  

(-34.61, 21.68) 
0.05  

(-0.14, 0.24) 
1995 2.72  

(-31.98, 37.42) 
2.63  

(-19.88, 25.13) 
-0.08 

 (-0.23, 0.08) 
1996 -6.85  

(-43.61, 29.9) 
13.84  

(-7.18, 34.86) 
-0.09  

(-0.27, 0.09) 
1997 -13.9  

(-50.09, 22.28) 
13.07  

(-9.84, 35.97) 
-0.18  

(-0.35, -0.02) 
1998 -15.94  

(-60.99, 29.11) 
4.7  

(-20.59, 29.99) 
-0.08  

(-0.27, 0.12) 
1999 13.89  

(-35.77, 63.55) 
24.03  

(-16.79, 64.85) 
-0.06 

 (-0.29, 0.16) 
2000 12.24  

(-21.17, 45.65) 
20.71  

(-5.76, 47.17) 
-0.05  

(-0.25, 0.14) 
2001 4.89  

(-40.52, 50.31) 
8.45  

(-12.84, 29.74) 
-0.06  

(-0.31, 0.19) 
2002 40.01  

(-5.47, 85.49) 
10.99  

(-19.21, 41.19) 
0.12  

(-0.15, 0.38) 
2003 -32.14  

(-100.09, 35.8) 
-5.47  

(-38.67, 27.72) 
-0.01  

(-0.31, 0.28) 
2004 -3.99  

(-36.54, 28.56) 
6.18  

(-15.62, 27.98) 
-0.02  

(-0.27, 0.22) 
2005 -22.47  

(-76.41, 31.46) 
9.14  

(-31.97, 50.25) 
-0.07  

(-0.42, 0.27) 
2006 31.08  

(-32.61, 94.77) 
-7.69  

(-69.79, 54.4) 
0.18  

(-0.13, 0.5) 
2007 14.36  

(-49.09, 77.82) 
11.57  

(-57.22, 80.36) 
-0.04  

(-0.35, 0.28) 
2008 45.57  

(-12.13, 103.27) 
20.94  

(-5.5, 47.38) 
0.00  

(-0.31, 0.32) 
2009 6.00  

(-79.91, 91.91) 
-15.38  

(-59.71, 28.95) 
0.00  

(-0.46, 0.45) 
2010 66.15  

(12.14, 120.17) 
54.51*  

(3.55, 105.46) 
0.2  

(-0.19, 0.58) 
2011 18.11  

(-22.41, 58.62) 
10.11  

(-16.62, 36.84) 
0.01  

(-0.3, 0.32) 
2012 49.40*  

(4.36, 94.44) 
31.06* 

(2.25, 59.88) 
0.02  

(-0.32, 0.35) 
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Table C.2 (continued) 

2013 -4.29  
(-46.09, 37.50) 

18.77  
(-12.8, 50.34) 

-0.22  
(-0.52, 0.07) 

2014 -23.40  
(-71.56, 24.76) 

27.07  
(-7.99, 62.13) 

-0.41  
(-0.88, 0.07) 

2015 14.06  
(-98.84, 126.96) 

39.43  
(-27.67, 106.52) 

-0.41  
(-1.27, 0.45) 

 

Table C.3: Cohort-specific average effect of changing from traditional center pivot to LEPA 
irrigation estimated using Callaway and Sant’Anna (2020) approach and aggregation specified in 
equation 2. Asterisks indicates 95% confidence interval does not contain zero. 

Adoption Cohort Acre-feet withdrawn Acres irrigated Depth-applied 
1992 -34.46  

(-66.75, -2.17) 
-18.87 

 (-44.14, 6.41) 
-0.09 

 (-0.31, 0.12) 
1993 -47.65  

(-81.86, -13.44) 
-7.49 

 (-46.88, 31.89) 
-0.27 

 (-0.58, 0.04) 
1994 14.13  

(-22.4, 50.65) 
10.49  

(-8.07, 29.05) 
0.04 

 (-0.13, 0.22) 
1995 -2.89  

(-50.39, 44.62) 
-10.3  

(-25.8, 5.19) 
0.01 

 (-0.17, 0.18) 
1996 7.34  

(-22.23, 36.92) 
-0.91  

(-28.61, 26.79) 
0.1 

 (-0.08, 0.27) 
1997 -10.46  

(-31.1, 10.17) 
-3.22  

(-12.78, 6.35) 
-0.06 

 (-0.13, 0.02) 
1998 4.81  

(-16.14, 25.76) 
3.88  

(-8, 15.77) 
-0.01  

(-0.09, 0.07) 
1999 -4.91  

(-29.4, 19.57) 
-4.05  

(-17.66, 9.56) 
0.01  

(-0.09, 0.10) 
2000 -1.8  

(-24.98, 21.38) 
-0.45  

(-11.81, 10.91) 
0.04 

 (-0.06, 0.14) 
2001 -9.14  

(-36.29, 18) 
-3.99  

(-16.84, 8.86) 
-0.02  

(-0.14, 0.10) 
2002 -8.38  

(-37.62, 20.86) 
-0.55  

(-13.28, 12.17) 
-0.03  

(-0.16, 0.1) 
2003 -15.06  

(-39.47, 9.36) 
-8.56  

(-20.54, 3.42) 
-0.05 

 (-0.19, 0.08) 
2004 -23.99  

(-53.77, 5.79) 
-5.76  

(-17.09, 5.57) 
-0.04 

 (-0.18, 0.09) 
2005 -18.64  

(-52.4, 15.12) 
-7.69  

(-19.06, 3.68) 
-0.03 

 (-0.15, 0.10) 
2006 -1.47  

(-28.33, 25.39) 
-0.55  

(-10.53, 9.43) 
0.01 

 (-0.12, 0.15) 
2007 -1.8  

(-24.08, 20.48) 
-1.06  

(-19.8, 17.68) 
-0.01 

 (-0.17, 0.15) 
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Table C.3 (continued) 

2008 -14.06  
(-59.36, 31.25) 

-4.71 
 (-24.53, 15.12) 

-0.04 
 (-0.28, 0.21) 

2009 -9.29  
(-55.07, 36.48) 

8.87  
(-16.08, 33.82) 

-0.01 
 (-0.2, 0.19) 

2010 -13.5  
(-78.17, 51.17) 

6.34  
(-19.83, 32.51) 

-0.05 
 (-0.26, 0.17) 

2011 6.31  
(-17.72, 30.33) 

-4.41  
(-30.41, 21.59) 

0.04 
 (-0.18, 0.26) 

2012 -20.92  
(-65.54, 23.7) 

-14.89 
 (-50.41, 20.63) 

-0.02 
 (-0.31, 0.28) 

2013 -0.75  
(-36.79, 35.28) 

-5.88  
(-24.82, 13.06) 

0.00 
 (-0.18, 0.18) 

2014 0.07 
(-40.97, 41.11) 

19.98  
(-35.51, 75.48) 

-0.06 
 (-0.31, 0.19) 

2015 1.59  
(-33.63, 36.81) 

7.51  
(-17.31, 32.33) 

-0.07 
 (-0.26, 0.11) 

2016 -52.97 
 (-233.8, 127.86) 

7.44  
(-28.41, 43.29) 

0.00 
 (-0.35, 0.35) 

2017 -18.42  
(-55.23, 18.4) 

-20.76  
(-62.03, 20.51) 

-0.01 
 (-0.27, 0.25) 

2018 6.24  
(-21.37, 33.85) 

0.08  
(-26.94, 27.09) 

0.02 
 (-0.13, 0.18) 

2019 9.55  
(-31.21, 50.31) 

-1.96  
(-55.2, 51.28) 

0.16 
 (-0.12, 0.44) 
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Table C.4: Estimated average treatment effect of converting from flood to center pivot irrigation 
by whether the water right group switched to a traditional center pivot or a center pivot with 
LEPA. Asterisks indicates 95% confidence interval does not contain zero.  

Technology  
transition and 
years used 
 

Estimator  Dependent 
variable 

 

 Acre-feet 
withdrawn 

Acres irrigated Depth-
applied 

Flood to traditional 
center pivot 
without LEPA  
(1991-2000) 

Callaway and 
Sant’Anna (2020) 

-15.06 

(-32.48, 2.35) 

1.63 

(-8.08, 11.34) 

-0.02* 

(-0.18, -0.01) 

Flood to center 
pivot with LEPA  
(1996-2005) 

Callaway and 
Sant’Anna (2020) 

-9.03 

(-25.04, 6.98) 

11.17* 

(3.18, 19.16) 

-0.12* 

(-0.20, -0.05) 

Note: Analyses were limited to the listed time periods listed because of small cohort size issues.  
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Table C.5: Estimated average treatment effect of each technology conversion on the fraction of water right groups’ irrigated acreage 
planted to five crops. Asterisks indicates 95% confidence interval does not contain zero.  

Technology  
transition 
 

Estimator Effect on fraction of water right group irrigated acres planted to listed crop 

 Alfalfa Corn Sorghum Soy Wheat 

Flood to center 
pivot  

Callaway and 
Sant’Anna (2020) 

0.00 

(-0.03, 0.03) 

0.08* 

(0.02, 0.13) 

-0.04* 

(-0.08, -0.01) 

0.01 

(-0.01, 0.04) 

0.01 

(-0.02, 0.04) 

       

Traditional 
center pivot to 
LEPA  

Callaway and 
Sant’Anna (2020) 

-0.00 

(-0.03, 0.02) 

-0.03 

(-0.07, 0.02) 

0.01 

(-0.01, 0.02) 

0.01 

(-0.01, 0.04) 

0.00 

(-0.02, 0.02) 
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Table C.6: Estimated dynamic treatment effects for the transition from flood to center pivot 
irrigation produced using the 𝛿 (𝑙) estimator in equation 4. Asterisks indicates 95% confidence 
interval (95% C.I.) does not contain zero.  

Time relative 
to treatment 

Dependent variable 

Acre-feet withdrawn Acres irrigated Depth-applied 

Estimate 95% C.I. Estimate 95% C.I. Estimate 95% C.I. 

-23 -9.38 (-59.81, 41.04) -0.41 (-13.37, 12.55) -0.04 (-0.45, 0.38) 

-22 -9.74 (-50.66, 31.18) 2.68 (-14.23, 19.59) -0.11 (-0.43, 0.21) 

-21 -8.41 (-37.12, 20.30) 2.53 (-4.71, 9.77) -0.13 (-0.42, 0.16) 

-20 -5.37 (-41.03, 30.29) -11.1 (-42.31, 20.11) 0 (-0.22, 0.21) 

-19 -10.05 (-33.01, 12.90) -3.32 (-11.45, 4.82) 0 (-0.16, 0.15) 

-18 0.58 (-20.07, 21.23) -1.38 (-8.34, 5.58) -0.02 (-0.16, 0.12) 

-17 -1.07 (-21.01, 18.87) -1.93 (-10.47, 6.60) -0.01 (-0.14, 0.13) 

-16 -0.92 (-19.28, 17.43) 3.86 (-6.63, 14.34) -0.01 (-0.14, 0.11) 

-15 5.74 (-16.43, 27.91) -4.47 (-14.59, 5.64) 0.04 (-0.08, 0.16) 

-14 -14.1 (-30.68, 2.48) -2.1 (-14.09, 9.88) -0.04 (-0.15, 0.07) 

-13 -2.55 (-18.76, 13.67) 2.62 (-6.07, 11.31) 0.01 (-0.10, 0.12) 

-12 -5.2 (-22.42, 12.02) -1.41 (-10.83, 8.02) -0.03 (-0.15, 0.09) 

-11 0.02 (-14.98, 15.02) 1.13 (-7.18, 9.44) 0.02 (-0.08, 0.12) 

-10 0.78 (-14.63, 16.20) 2.07 (-5.72, 9.86) 0 (-0.10, 0.09) 

-9 0.94 (-12.05, 13.92) -1.56 (-9.27, 6.15) 0.04 (-0.05, 0.12) 

-8 2.22 (-10.62, 15.07) -0.31 (-8.24, 7.62) -0.01 (-0.09, 0.07) 

-7 5.05 (-8.77, 18.86) -2.48 (-9.55, 4.60) 0.03 (-0.04, 0.11) 

-6 0.68 (-12.37, 13.73) 3.04 (-3.98, 10.06) -0.03 (-0.10, 0.04) 

-5 2.97 (-8.81, 14.75) 1.55 (-4.24, 7.34) 0.02 (-0.04, 0.08) 

-4 0.25 (-10.91, 11.40) -1.49 (-7.28, 4.29) 0.03 (-0.03, 0.09) 

-3 2.38 (-7.27, 12.04) 1.02 (-3.87, 5.92) -0.01 (-0.06, 0.05) 

-2 -1.69 (-11.92, 8.55) -1.98 (-6.89, 2.93) 0.01 (-0.05, 0.07) 

-1 -3.06 (-12.64, 6.53) 0.63 (-4.04, 5.30) -0.03 (-0.08, 0.03) 

0 -18.95* (-28.41, -9.49) 6.78* (1.89, 11.68) -0.15* (-0.20, -0.10) 

1 -9.79 (-20.18, 0.60) 9.03* (2.73, 15.34) -0.11* (-0.17, -0.06) 

2 -8.62 (-20.13, 2.89) 8.97* (2.12, 15.81) -0.09* (-0.15, -0.04) 

3 -4.6 (-16.02, 6.81) 10.83* (3.90, 17.76) -0.10* (-0.16, -0.04) 

4 -5.22 (-17.84, 7.41) 8.41* (1.42, 15.41) -0.10* (-0.17, -0.04) 

5 -8.51 (-21.89, 4.88) 9.65* (1.44, 17.86) -0.11* (-0.18, -0.04) 

6 -6.54 (-21.34, 8.25) 9.86* (1.70, 18.01) -0.09* (-0.17, -0.02) 

7 -5.39 (-21.21, 10.44) 11.11* (2.31, 19.91) -0.09* (-0.17, -0.01) 

8 -3.45 (-21.99, 15.09) 10.29* (0.26, 20.32) -0.06 (-0.15, 0.02) 

9 1.72 (-16.91, 20.35) 13.42* (1.07, 25.77) -0.06 (-0.15, 0.03) 

10 -3.7 (-25.63, 18.22) 12.58 (-0.46, 25.62) -0.09 (-0.19, 0.00) 

11 -0.03 (-24.62, 24.56) 12.05 (-3.23, 27.33) -0.08 (-0.18, 0.03) 

12 3.08 (-23.52, 29.68) 11.85 (-5.69, 29.38) -0.05 (-0.17, 0.08) 
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Table C.6 (continued) 

13 7.57 (-22.90, 38.04) 13.12 (-8.82, 35.05) -0.04 (-0.17, 0.09) 

14 4.5 (-30.25, 39.26) 9.24 (-16.79, 35.27) -0.03 (-0.18, 0.11) 

15 9.5 (-29.20, 48.19) 8.69 (-18.67, 36.05) 0 (-0.17, 0.17) 

16 12.25 (-33.77, 58.26) 4.74 (-24.31, 33.78) 0.06 (-0.14, 0.27) 

17 9.92 (-49.00, 68.83) -1.86 (-40.58, 36.86) 0.07 (-0.15, 0.30) 

18 24.95 (-32.93, 82.83) -1.32 (-41.33, 38.69) 0.09 (-0.15, 0.32) 

19 33.62 (-21.83, 89.07) 5.85 (-34.81, 46.51) 0.05 (-0.22, 0.33) 

20 27.69 (-37.88, 93.25) -0.74 (-43.41, 41.93) 0.06 (-0.21, 0.33) 

21 40.98 (-26.58, 108.55) 2.83 (-44.20, 49.87) 0.17 (-0.13, 0.46) 

22 17.41 (-48.62, 83.43) 14.09 (-30.41, 58.58) 0.01 (-0.40, 0.43) 

23 33.19 (-21.72, 88.09) 28.87 (-16.42, 74.15) 0.03 (-0.49, 0.55) 
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Table C.7: Estimated dynamic treatment effects for the transition from traditional center pivot to 
LEPA irrigation produced using the 𝛿 (𝑙) estimator in equation 4. Asterisks indicates 95% 
confidence interval (95% C.I.) does not contain zero. 

Time relative 
to treatment 

Dependent variable 

Acre-feet withdrawn Acres irrigated Depth-applied 

Estimate 95% C.I. Estimate 95% C.I. Estimate 95% C.I. 

-27 43.65 (-49.99, 137.29) -40.48 (-198.49, 117.53) 0.48 (-1.41, 2.37) 

-26 4.11 (-38.70, 46.91) 14.07 (-26.00, 54.14) 0.00 (-0.52, 0.52) 

-25 7.55 (-24.51, 39.60) -1.50 (-13.24, 10.24) 0.00 (-0.17, 0.17) 

-24 -18.06 (-49.10, 12.97) 8.62 (-27.37, 44.60) -0.22 (-0.64, 0.20) 

-23 17.19 (-15.49, 49.87) 2.24 (-10.78, 15.25) 0.08 (-0.11, 0.26) 

-22 6.78 (-38.82, 52.38) -8.59 (-43.86, 26.68) 0.03 (-0.30, 0.36) 

-21 -7.16 (-35.79, 21.47) -7.34 (-19.04, 4.36) 0.01 (-0.12, 0.13) 

-20 2.75 (-19.67, 25.17) -0.64 (-12.66, 11.38) 0.04 (-0.07, 0.15) 

-19 -6.76 (-23.58, 10.06) -3.92 (-13.97, 6.12) -0.04 (-0.13, 0.06) 

-18 5.67 (-18.14, 29.48) 1.04 (-8.92, 11.00) 0.02 (-0.10, 0.13) 

-17 -6.80 (-33.33, 19.73) 7.44 (-5.80, 20.69) -0.05 (-0.18, 0.09) 

-16 -3.98 (-45.42, 37.46) -5.35 (-24.07, 13.38) 0.01 (-0.17, 0.19) 

-15 -2.22 (-19.27, 14.83) -2.84 (-11.49, 5.82) -0.02 (-0.11, 0.07) 

-14 -4.43 (-18.93, 10.07) 0.98 (-7.74, 9.70) -0.03 (-0.11, 0.05) 

-13 3.91 (-7.88, 15.71) 2.45 (-3.99, 8.89) 0.01 (-0.05, 0.08) 

-12 -3.33 (-16.76, 10.11) -2.92 (-9.29, 3.46) 0.00 (-0.06, 0.06) 

-11 -3.17 (-13.85, 7.51) 0.14 (-5.32, 5.59) -0.01 (-0.07, 0.05) 

-10 -2.71 (-11.00, 5.58) -2.29 (-7.09, 2.51) -0.01 (-0.06, 0.04) 

-9 1.22 (-6.77, 9.21) 2.23 (-1.99, 6.44) -0.01 (-0.05, 0.04) 

-8 -2.66 (-9.40, 4.08) -2.07 (-5.49, 1.34) 0.00 (-0.04, 0.04) 

-7 3.59 (-3.33, 10.51) -0.62 (-4.08, 2.85) 0.01 (-0.02, 0.05) 

-6 -5.23 (-10.50, 0.04) 0.62 (-1.96, 3.21) -0.03 (-0.07, 0.00) 

-5 -3.04 (-8.70, 2.63) -0.20 (-2.91, 2.51) 0.00 (-0.03, 0.03) 

-4 2.05 (-3.95, 8.05) 0.25 (-2.64, 3.14) 0.01 (-0.02, 0.04) 

-3 3.07 (-2.90, 9.04) 0.71 (-1.92, 3.35) 0.01 (-0.02, 0.04) 

-2 -2.10 (-7.87, 3.67) -0.73 (-3.46, 1.99) -0.01 (-0.03, 0.02) 

-1 4.86 (-0.67, 10.39) 1.01 (-1.70, 3.73) 0.01 (-0.02, 0.04) 

0 -0.66 (-5.58, 4.26) -1.63 (-3.93, 0.67) 0.00 (-0.02, 0.03) 

1 -1.44 (-7.16, 4.29) -2.11 (-5.00, 0.77) 0.01 (-0.02, 0.04) 

2 -1.27 (-7.78, 5.23) -2.66 (-5.84, 0.53) 0.00 (-0.03, 0.03) 

3 1.65 (-5.64, 8.95) -0.67 (-4.00, 2.66) 0.00 (-0.03, 0.04) 

4 1.09 (-7.71, 9.88) -1.21 (-5.45, 3.02) 0.01 (-0.03, 0.05) 

5 0.95 (-8.41, 10.31) -0.86 (-5.64, 3.92) 0.01 (-0.03, 0.05) 

6 -1.83 (-11.49, 7.84) -1.62 (-6.96, 3.71) 0.00 (-0.04, 0.03) 

7 -4.61 (-15.50, 6.28) -2.36 (-8.40, 3.69) -0.02 (-0.07, 0.02) 

8 -4.62 (-16.53, 7.28) -2.72 (-9.57, 4.13) -0.02 (-0.06, 0.03) 
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Table C.7 (continued) 

9 -6.40 (-20.41, 7.60) -3.39 (-9.83, 3.05) -0.01 (-0.06, 0.04) 

10 -10.24 (-24.56, 4.08) -3.98 (-11.68, 3.71) -0.03 (-0.08, 0.03) 

11 -11.01 (-25.30, 3.28) -3.43 (-11.37, 4.52) -0.03 (-0.09, 0.02) 

12 -11.11 (-27.61, 5.39) -2.21 (-11.06, 6.65) -0.04 (-0.10, 0.02) 

13 -12.23 (-30.59, 6.12) -2.17 (-10.99, 6.65) -0.03 (-0.11, 0.04) 

14 -12.84 (-33.26, 7.59) -2.48 (-12.73, 7.77) -0.02 (-0.10, 0.06) 

15 -7.63 (-29.08, 13.82) -2.11 (-14.62, 10.41) -0.01 (-0.10, 0.08) 

16 -11.35 (-36.08, 13.38) -2.39 (-15.51, 10.73) -0.03 (-0.12, 0.06) 

17 -11.19 (-37.85, 15.47) -0.62 (-15.00, 13.77) -0.05 (-0.14, 0.05) 

18 -9.79 (-40.77, 21.19) 0.47 (-15.90, 16.84) -0.04 (-0.14, 0.05) 

19 -11.33 (-43.3, 20.64) 0.56 (-18.61, 19.73) -0.06 (-0.18, 0.06) 

20 -9.72 (-43.06, 23.61) -2.02 (-21.72, 17.68) -0.05 (-0.16, 0.07) 

21 -17.65 (-57.95, 22.65) -5.23 (-29.00, 18.53) -0.08 (-0.21, 0.05) 

22 -21.11 (-61.81, 19.58) -6.98 (-30.10, 16.14) -0.09 (-0.25, 0.07) 

23 -24.69 (-54.95, 5.57) -4.15 (-29.30, 20.99) -0.13 (-0.30, 0.04) 

24 -37.96* (-68.83, -7.10) -7.54 (-35.87, 20.78) -0.22 (-0.45, 0.01) 

25 -42.13* (-80.63, -3.63) -14.25 (-44.07, 15.58) -0.24 (-0.49, 0.02) 

26 -50.82* (-93.91, -7.73) -44.15 (-118.28, 29.98) -0.23 (-0.63, 0.18) 

27 -66.26* (-119.51, -13.00) -41.24 (-127.95, 45.48) -0.33 (-1.00, 0.34) 
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Appendix D - Robustness checks 

Table D.1: Results from parallel trends pre-test for the flood to center pivot sub-sample. P-values 
less than 0.10 indicate rejection of the null hypothesis that pre-treatment coefficients are jointly 
indistinguishable from zero at the 90% confidence level. Asterisks indicate time periods when the 
pre-test passes for all three dependent variables at the 90% level. 
 
  Flood to center pivot 

Pre-test P-value  
 
Period tested 

Acre-feet 
withdrawn 

Acres irrigated Depth-applied 

1991 to 1995 0.89 0.07 0.08 
1991 to 2000 0.03 0.09 0.01 
1991 to 2005 0.00 0.07 0.00 
1991 to 2010 0.00 0.00 0.00 
1991 to 2015 0.00 0.00 0.00 
1996 to 2000* 0.55 0.67 0.22 
1996 to 2005* 0.11 0.73 0.27 
1996 to 2010 0.00 0.04 0.16 
1996 to 2015 0.00 0.00 0.00 
2001 to 2005* 0.55 1.00 0.98 
2001 to 2010 0.02 0.85 0.56 
2001 to 2015 0.00 0.46 0.00 
2006 to 2010* 0.18 0.33 0.64 
2006 to 2015 0.03 0.55 0.01 
2011 to 2015* 0.39 0.23 0.12 
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Table D.2: Results from parallel trends pre-test for the transition from traditional center pivot to 
LEPA. P-values less than 0.10 indicate rejection of the null hypothesis that pre-treatment 
coefficients are jointly indistinguishable from zero at the 90% confidence level. Asterisks 
indicate time periods when the pre-test passes for all three dependent variables at the 90% level. 
 
  Traditional center pivot to LEPA  

Pre-test P-value  
 
Period tested 

Acre-feet withdrawn Acres irrigated Depth-applied 

1991 to 1995 0.00 0.76 0.01 
1991 to 2000 0.00 0.71 0.00 
1991 to 2005 0.00 0.52 0.00 
1991 to 2010 0.00 0.00 0.00 
1991 to 2015 0.00 0.52 0.00 
1991 to 2019 0.00 0.10 0.00 
1996 to 2000 0.55 0.30 0.06 
1996 to 2005* 0.24 0.23 0.19 
1996 to 2010 0.02 0.10 0.08 
1996 to 2015 0.00 0.02 0.00 
1996 to 2019 0.00 0.00 0.00 
2001 to 2005* 0.23 0.26 0.45 
2001 to 2010 0.06 0.65 0.28 
2001 to 2015 0.00 0.80 0.00 
2001 to 2019 0.00 0.26 0.00 
2006 to 2010* 0.84 0.74 0.39 
2006 to 2015 0.10 0.85 0.00 
2006 to 2019 0.00 0.77 0.00 
2011 to 2015 0.10 0.58 0.06 
2011 to 2019 0.10 0.61 0.00 
2016 to 2019* 0.17 0.54 0.67 
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Table D.3: Estimated average treatment effect of each technology change in levels for the 𝛿  
estimator (Callaway and Sant’Anna 2020) and TWFE using the time periods when the pre-test 
passes for each transition. Asterisks indicates 95% confidence interval does not contain zero.  

Technology  
transition and 
years used 
 

Estimator  Dependent 
variable 

 

 Acre-feet 
withdrawn 

Acres irrigated Depth-
applied 

Flood to center 
pivot  
(1996-2005) 

Callaway and 
Sant’Anna (2020) 

-9.88 

(-22.83, 3.06) 

10.38* 

(2.42, 18.34) 

-0.12* 

(-0.19, -0.06) 

 Two-way fixed 
effects 

-16.93 

(-23.94, -9.93) 

5.54 

(0.88, 10.20) 

-0.14 

(-0.18, -0.11) 

     

Traditional 
center pivot to 
LEPA     
(1996-2005)      

Callaway and 
Sant’Anna (2020) 

0.90 

(-5.89, 7.69) 

-1.56 

(-5.01, 1.88) 

-0.00 

(-0.03, 0.03) 

 Two-way fixed 
effects 

2.99 

(-1.14, 6.13) 

-0.43 

(-1.85, 0.99) 

0.01 

(-0.01, 0.02) 
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Figure D.1: Dynamic treatment effects due to converting from flood to center pivot irrigation for 
the time period when pre-test passes, 1996 to 2005. Effects are expressed as a percent change 
relative to the sample mean of each dependent variable. Error bars represent the 95% confidence 
interval, with dotted lines indicating the confidence interval extends beyond the y-axis range.   
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Figure D.2: Dynamic treatment effects due to switching from traditional center pivot to LEPA 
irrigation for the time period when pre-test passes, 1996 to 2005. Effects are expressed as a 
percent change relative to the sample mean of each dependent variable. Error bars represent the 
95% confidence interval.   
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 Table D.4: Balanced dynamic treatment effects for the effect of converting from flood to center 
pivot irrigation on acre-feet withdrawn. After balancing, the treated group only includes water 
right groups who are observed for the listed number of years after the change. Asterisks indicates 
95% confidence interval does not contain zero. 

Effect on 
groundwater 
withdrawals 
at 𝑙 years 
relative to 
adoption 

Balanced so treated water right groups adopted center pivot for at least 𝑡 years 
 

𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 

𝑙 = −6 -27.07 
  (-80.93, 26.79) 

   

𝑙 = −5 15.8   
(-15.44, 47.04) 

   

𝑙 = −4 -6.03 
  (-27.21, 15.14) 

-4.97  
 (-37.63, 27.68) 

  

𝑙 = −3 0.33 
  (-16.48, 17.15) 

-7.75  
 (-26.6, 11.10) 

  

𝑙 = −2 -5.35   
(-21.41, 10.70) 

-4.36  
 (-24.79, 16.06) 

-8.66  
 (-45.74, 28.42) 

 

𝑙 = −1 -3.18  
 (-17.39, 11.04) 

-2.6   
(-19.08, 13.89) 

-3.70 
 (-27.18, 19.79) 

 

𝑙 = 0 -19.62* 
  (-33.25, -6.00) 

-19.75*   
(-33.84, -5.67) 

-26.59*  
 (-42.94, -10.23) 

-38.52* 
(-67.65, -9.40) 

𝑙 = 1 -1.85  
 (-16.96, 13.26) 

-2.76  
 (-17.62, 12.09) 

-4.59  
 (-25.39, 16.2) 

-6.67*  
 (-37.75, 24.42) 

𝑙 = 2 -7.05 
  (-21.72, 7.61) 

-11.89  
 (-27.77, 3.98) 

-12.24  
 (-32.06, 7.57) 

-32.5  
 (-61.7, -3.30) 

𝑙 = 3  -11.47  
 (-28.53, 5.60) 

-9.02  
 (-30.12, 12.07) 

-17.41 * 
 (-45.47, 10.65) 

𝑙 = 4  -9.93  
 (-29.44, 9.59) 

-17.68   
(-41.19, 5.82) 

-23.28   
(-58.97, 12.42) 

𝑙 = 5   -25.22 *  
(-50.21, -0.23) 

-41.02 *  
(-79.36, -2.69) 

𝑙 = 6   -23.94   
(-49.96, 2.09) 

-41.03   
(-83.57, 1.51) 

𝑙 = 7    -27.74  
 (-70.81, 15.32) 

𝑙 = 8    -12.85   
(-57.27, 31.57) 
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Table D.5: Balanced dynamic treatment effects for the effect of converting from flood to center 
pivot irrigation on acres irrigated. After balancing, the treated group only includes water right 
groups who are observed for the listed number of years after the change. Asterisks indicates 95% 
confidence interval does not contain zero. 

Effect on 
irrigated 
acres at 𝑙 
years 
relative to 
adoption 

Balanced so treated water right groups adopted center pivot for at least 𝑡 years 
 

𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 

𝑙 = −6 12.67   
(-22.32, 47.67) 

   

𝑙 = −5 4.32  
 (-14.65, 23.29) 

   

𝑙 = −4 -5.99   
(-18.91, 6.94) 

-14.73   
(-31.60, 2.13) 

  

𝑙 = −3 0.02   
(-12.44, 12.48) 

-2.49  
(-19.29, 14.31) 

  

𝑙 = −2 -2.18   
(-12.05, 7.69) 

-2.49  
 (-13.91, 8.94) 

-1.64  
 (-19.74, 16.46) 

 

𝑙 = −1 -2.05   
(-9.09, 5.00) 

-1.52   
(-9.53, 6.48) 

-4.01   
(-15.39, 7.37) 

 

𝑙 = 0 10.8*  
 (3.07, 18.52) 

10.73*   
(2.42, 19.04) 

12.39*   
(0.93, 23.86) 

9.96  
 (-8.27, 28.19) 

𝑙 = 1 12.19*   
(3.1, 21.27) 

13.86*  
 (5.40, 22.32) 

17.78*  
 (6.00, 29.55) 

16.56  
 (-0.30, 33.43) 

𝑙 = 2 10.7*   
(1.00, 20.40) 

11.95*   
(1.96, 21.94) 

15.19*  
 (1.67, 28.70) 

16.46   
(-3.51, 36.43) 

𝑙 = 3  13.63*   
(3.13, 24.14) 

11.91   
(-2.25, 26.07) 

9.73   
(-7.18, 26.64) 

𝑙 = 4  12.2*   
(1.15, 23.26) 

8.39  
 (-5.16, 21.94) 

3.51   
(-18.53, 25.54) 

𝑙 = 5   13.35  
 (-0.16, 26.87) 

12.43   
(-5.87, 30.74) 

𝑙 = 6   16.07*   
(1.15, 30.99) 

16.48   
(-3.55, 36.52) 

𝑙 = 7    19.45   
(-2.44, 41.33) 

𝑙 = 8    22.59   
(-1.93, 47.11) 
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Table D.6: Balanced dynamic treatment effects for the effect of converting from flood to center 
pivot irrigation on depth-applied. After balancing, the treated group only includes water right 
groups who are observed for the listed number of years after the change. Asterisks indicates 95% 
confidence interval does not contain zero. 

Effect on 
depth-
applied at 𝑙 
years 
relative to 
adoption 

Balanced so treated water right groups adopted center pivot for at least 𝑡 years 
 

𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 

𝑙 = −6 -0.12   
(-0.37, 0.13) 

   

𝑙 = −5 0.11  
 (-0.04, 0.27) 

   

𝑙 = −4 -0.03   
(-0.16, 0.09) 

0.00   
(-0.19, 0.2) 

  

𝑙 = −3 0.00   
(-0.11, 0.1) 

-0.06   
(-0.2, 0.09) 

  

𝑙 = −2 -0.01   
(-0.09, 0.08) 

-0.02  
 (-0.13, 0.09) 

-0.02   
(-0.21, 0.16) 

 

𝑙 = −1 -0.04   
(-0.13, 0.04) 

-0.02   
(-0.11, 0.08) 

-0.01   
(-0.13, 0.11) 

 

𝑙 = 0 -0.15*   
(-0.22, -0.09) 

-0.16*   
(-0.23, -0.09) 

-0.2* 
(-0.28, -0.12) 

-0.25*  
 (-0.38, -0.12) 

𝑙 = 1 -0.1*   
(-0.17, -0.02) 

-0.11*   
(-0.19, -0.03) 

-0.14*   
(-0.23, -0.05) 

-0.16*  
 (-0.3, -0.02) 

𝑙 = 2 -0.09 * 
 (-0.17, -0.01) 

-0.13*  
 (-0.22, -0.04) 

-0.15*   
(-0.25, -0.05) 

-0.26*   
(-0.41, -0.11) 

𝑙 = 3  -0.18*   
(-0.28, -0.09) 

-0.15*  
 (-0.25, -0.06) 

-0.2*   
(-0.36, -0.05) 

𝑙 = 4  -0.16*   
(-0.25, -0.08) 

-0.2* 
 (-0.31, -0.09) 

-0.26*   
(-0.44, -0.08) 

𝑙 = 5   -0.23* 
(-0.34, -0.12) 

-0.32*   
(-0.52, -0.12) 

𝑙 = 6   -0.2* 
(-0.31, -0.08) 

-0.31*  
 (-0.48, -0.14) 

𝑙 = 7   -0.02*   
(-0.21, 0.16 

-0.23*  
 (-0.42, -0.04) 

𝑙 = 8    -0.21*   
(-0.4, -0.02) 
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Table D.7: Balanced dynamic treatment effects for the effect of changing from traditional center 
pivot to LEPA irrigation on acre-feet withdrawn. After balancing, the treated group only includes 
water right groups who are observed for the listed number of years after the change. Asterisks 
indicates 95% confidence interval does not contain zero. 

Effect on 
groundwater 
withdrawals 
at 𝑙 years 
relative to 
adoption 

Balanced so treated water right groups adopted LEPA for at least 𝑡 years 
 

𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 

𝑙 = −6 0.86  
(-21.94, 23.67) 

   

𝑙 = −5 -2.84  
(-18.91, 13.23) 

   

𝑙 = −4 -5.91  
(-17.65, 5.83) 

-12.21 
 (-31.72, 7.31) 

  

𝑙 = −3 -1.83  
(-11.04, 7.37) 

-2.59 
(-15.21, 10.03) 

  

𝑙 = −2 0.73  
(-7.88, 9.35) 

0.67  
(-9.31, 10.65) 

-4.38 
 (-23.9, 15.13) 

 

𝑙 = −1 4.52 
 (-1.95, 10.98) 

4.56 
 (-2.46, 11.58) 

4.69 
 (-4.99, 14.36) 

 

𝑙 = 0 0.16 
 (-5.29, 5.60) 

1.20 
 (-4.2, 6.61) 

-0.96 
 (-7.28, 5.37) 

-2.64 
 (-11.54, 6.25) 

𝑙 = 1 0.72 
 (-5.53, 6.97) 

1.20 
 (-5.23, 7.63) 

-2.15 
 (-9.76, 5.46) 

-3.24 
 (-14.12, 7.65) 

𝑙 = 2 1.69 
 (-5.34, 8.71) 

3.21 
 (-4.36, 10.78) 

-1.86 
 (-10.09, 6.37) 

-10.16 
 (-20.35, 0.04) 

𝑙 = 3  5.86 
 (-2.69, 14.41) 

6.37 
 (-3.93, 16.67) 

0.58  
(-13.02, 14.19) 

𝑙 = 4  6.37 
 (-3.84, 16.58) 

8.99 
 (-2.94, 20.92) 

3.86  
(-11.44, 19.15) 

𝑙 = 5   6.49 
 (-6, 18.97) 

5.15 
 (-12.7, 22.99) 

𝑙 = 6   -0.81 
 (-13.6, 11.99) 

-2.5 
 (-18.1, 13.11) 

𝑙 = 7    -11.05 
 (-28.79, 6.68) 

𝑙 = 8    -11.77 
 (-31.47, 7.93) 
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Table D.8: Balanced dynamic treatment effects for the effect of changing from traditional center 
pivot to LEPA irrigation on acres irrigated. After balancing, the treated group only includes 
water right groups who are observed for the listed number of years after the change. Asterisks 
indicates 95% confidence interval does not contain zero. 

Effect on 
acres 
irrigated at 𝑙 
years 
relative to 
adoption 

Balanced so treated water right groups adopted LEPA for at least 𝑡 years 
 

𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 

𝑙 = −6 -1.72 
 (-14.54, 11.10) 

   

𝑙 = −5 -2.08 
 (-8.32, 4.16) 

   

𝑙 = −4 0.81 
 (-3.7, 5.32) 

-2.72  
(-8.75, 3.31) 

  

𝑙 = −3 0.16 
 (-3.52, 3.84) 

1.39  
(-3.3, 6.07) 

  

𝑙 = −2 1.26 
 (-2.71, 5.22) 

2.21 
 (-2.39, 6.81) 

5.53 
 (-3.18, 14.24) 

 

𝑙 = −1 1.42 
 (-1.96, 4.81) 

0.98  
(-2.8, 4.76) 

0.75 
 (-4.04, 5.55) 

 

𝑙 = 0 -1.73 
 (-4.07, 0.60) 

-1.36  
(-3.79, 1.07) 

-2.59  
(-5.44, 0.26) 

-3.5 
 (-7.45, 0.45) 

𝑙 = 1 -2.08 
 (-5.23, 1.06) 

-1.92 
 (-5.12, 1.27) 

-2.91 
 (-6.64, 0.81) 

-4.06 
 (-9.24, 1.12) 

𝑙 = 2 -1.75 
 (-5.34, 1.84) 

-1.01 
 (-4.65, 2.63) 

-1.29  
(-5.31, 2.73) 

-4.51 
 (-9.85, 0.83) 

𝑙 = 3  0.35 
 (-3.83, 4.53) 

0.54 
 (-4.36, 5.45) 

0.29 
 (-6.82, 7.39) 

𝑙 = 4  -0.12 
 (-5.44, 5.19) 

0.28 
 (-5.22, 5.77) 

-0.33 
 (-7.26, 6.59) 

𝑙 = 5   0.54 
 (-5.65, 6.72) 

-1.81 
 (-10.33, 6.70) 

𝑙 = 6   -0.8  
(-7.41, 5.81) 

-1.32 
 (-9.07, 6.44) 

𝑙 = 7    -3.89  
(-14.05, 6.28) 

𝑙 = 8    -5.51  
(-17.36, 6.34) 
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Table D.9: Balanced dynamic treatment effects for the effect of changing from traditional center 
pivot to LEPA irrigation on depth-applied. After balancing, the treated group only includes water 
right groups who are observed for the listed number of years after the change. Asterisks indicates 
95% confidence interval does not contain zero. 

Effect on 
depth-
applied at 𝑙 
years 
relative to 
adoption 

Balanced so treated water right groups adopted LEPA for at least 𝑡 years 
 

𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 

𝑙 = −6 -0.01 
 (-0.09, 0.07) 

   

𝑙 = −5 0.01 
 (-0.06, 0.08) 

   

𝑙 = −4 -0.04 
 (-0.1, 0.02) 

-0.05 
 (-0.16, 0.06) 

  

𝑙 = −3 -0.01 
 (-0.05, 0.04) 

-0.02 
 (-0.08, 0.04) 

  

𝑙 = −2 0.00 
 (-0.05, 0.04) 

-0.01  
(-0.06, 0.04) 

-0.04  
(-0.13, 0.04) 

 

𝑙 = −1 0.00 
 (-0.03, 0.04) 

0 
 (-0.04, 0.04) 

0.01  
(-0.03, 0.06) 

 

𝑙 = 0 0.00 
 (-0.02, 0.03) 

0.01  
(-0.02, 0.03) 

0.00 
 (-0.03, 0.03) 

0.00 
 (-0.04, 0.05) 

𝑙 = 1 0.01 
 (-0.02, 0.04) 

0.01  
(-0.02, 0.04) 

-0.01  
(-0.05, 0.03) 

-0.01 
 (-0.06, 0.04) 

𝑙 = 2 0.00 
 (-0.03, 0.04) 

0.01  
(-0.03, 0.04) 

-0.03  
(-0.06, 0.01) 

-0.04 
 (-0.09, 0.01) 

𝑙 = 3  0 
 (-0.03, 0.04) 

0.00 
 (-0.05, 0.05) 

-0.04 
 (-0.1, 0.02) 

𝑙 = 4  0.01  
(-0.03, 0.06) 

0.02  
(-0.03, 0.07) 

-0.01 
 (-0.07, 0.06) 

𝑙 = 5   0.02  
(-0.04, 0.07) 

0.02 
 (-0.05, 0.09) 

𝑙 = 6   -0.01 
 (-0.07, 0.04) 

-0.01 
 (-0.09, 0.06) 

𝑙 = 7    -0.08* 
 (-0.15, -0.01) 

𝑙 = 8    -0.08 
 (-0.16, 0.00) 
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To test the robustness of our results, we also employ the 𝐷𝐼𝐷ℓ estimator from de 

Chaisemartin and D’Haultfoeuille (2022) to estimate the effect of adopting a new technology 

over all periods following adoption.16 As in de Chaisemartin and D’Haultfoeuille (2022), we let 

𝑁 ,ℓ, indicate the number of irrigators in the group who first adopted the new technology ℓ years 

before 𝑡, and 𝑁  denote the number of irrigators in groups who have not adopted the technology 

from the beginning of the time series until 𝑡. Then, to estimate the average outcome across all 

post-treatment periods, and the dynamic treatment effects for each post-treatment period, we use 

the following difference-in-differences estimator from de Chaisemartin and D’Haultfoeuille 

(2022), 

𝐷𝐼𝐷 ,ℓ =
,ℓ

∑ 𝑌 , , − 𝑌 , , ℓ − (𝑋 , , − 𝑋 , , ℓ )′𝜃∀ ∈   ℓ −

∑ ∑ 𝑌 , , − 𝑌 , , ℓ − (𝑋 , , − 𝑋 , , ℓ )′𝜃
,

.        (D.1) 

Equation D.1 compares the evolution of the outcome variable from 𝑡 − ℓ − 1 to 𝑡 for 

those who adopted the new technology ℓ years ago with groups who have yet to adopt by 𝑡. 

Note, 𝑔 = 𝑇 + 1  for groups who never adopt the technology, so they are included in this second 

summation along with irrigators who adopt the technology in periods after 𝑡. This means the 

control group is comprised of both “not-yet-treated” and “never-treated” irrigators. Annual 

precipitation and evapotranspiration are accounted for in equation D.1 via an OLS regression of 

the outcome evolution within the control group, 𝑌 , , − 𝑌 , , ℓ  | 𝑔 > 𝑡 , on the evolution of 

its time-varying covariates during the same period, 𝑋 , , − 𝑋 , , ℓ  | 𝑔 > 𝑡 , and time fixed 

effects. Letting 𝜃  indicate the estimated coefficients for 𝑋 , , − 𝑋 , , ℓ  from this 

 
16 The 𝐷𝐼𝐷ℓ estimator expands upon the 𝐷𝐼𝐷  estimator of instantaneous treatment effects outlined in de 

Chaisemartin and D’Haultfoeuille (2020).While the 𝐷𝐼𝐷ℓ estimator accommodates treatments that turn on and off 
over time, we limit our sample so the treatment group includes irrigators who switch into the new technology once 
and never revert to the older technology. 
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regression, the expressions within summations in equation D.1 subtract the change in outcomes 

we would expect given the treatment group’s evolution of covariates from the observed outcome 

evolution to remove variation due to changes in the covariates. 

The inclusion of covariates in the 𝐷𝐼𝐷 ,ℓ estimator from equation D.1 requires the same 

conditional parallel trends assumption as two-way fixed effects regressions (Clement de 

Chaisemartin and D’Haultfoeuille 2020). Namely, the conditional common trends assumption 

requires that any differential trends in the outcome variable between groups are explained with a 

linear model in 𝑋 , − 𝑋 , ℓ , where the terms 𝑋 ,  and 𝑋 , ℓ  contain the time-varying 

covariates for the reference groups in the period immediately prior to adoption, 𝑡 − ℓ − 1, and at 

time 𝑡.  

Now, we turn our attention to aggregating the individual 𝐷𝐼𝐷 ,ℓ estimates into an average 

effect for each length of treatment, ℓ, and the overall effect across all treatment durations. First, 

we construct a weighted average of 𝐷𝐼𝐷 ,ℓ terms for each value of ℓ to generate event-study style 

estimates of the effect of using the new technology for ℓ years including the instantaneous 

treatment effect. To generate the weights, we define 𝑁ℓ  as the number of irrigators across all 

groups who are observed for at least ℓ years after adopting the new technology. Defining 𝑇 as 

the last period in which we observe an irrigator who still has not adopted the newer technology, 

we construct a weighted average of the effect of ℓ years using the new technology regardless of 

when the adoption decision was first made, 

 𝐷𝐼𝐷ℓ =
ℓ

∑ 𝑁 ,ℓ𝐷𝐼𝐷 ,ℓℓ .           (D.2) 
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The weight for each 𝐷𝐼𝐷 ,ℓ in equation D.2 is the number of irrigators in groups who adopted the 

technology ℓ years ago relative to period 𝑡, 𝑁 ,ℓ, divided by the total number of irrigators who 

have a recorded outcome ℓ years after adopting the new technology, 𝑁ℓ .  

To recover the overall average treatment effect, we then take a weighted average of these 

𝛿ℓ , or 𝐷𝐼𝐷ℓ , values across all values for ℓ. The weights are the number of irrigators in groups 

who are observed ℓ years after adoption divided by the total number of irrigators who adopt the 

technology at any point, 𝑤ℓ = 𝑁ℓ ∑ 𝑁ℓℓ⁄ . The overall average treatment effect can be expressed 

as:  

𝛿 = ∑ 𝑤ℓ𝐷𝐼𝐷ℓ∀ℓ ,         (D.3) 

where the 𝐶𝐷 superscript denotes that it is the de Chaisemartin and D’Haultfoeuille (2022) 

estimator. 

There are four assumptions necessary for the individual 𝐷𝐼𝐷 ,ℓ estimators to recover the 

effect of adopting the technology ℓ years before period 𝑡, and for the resulting aggregation, 𝛿 ,  

to be an unbiased estimator of the average treatment effect of adopting the new technology. First, 

the treatment design must be “sharp” so the sequence of treatment across all irrigators in a group 

is the same. We express this in the example within Appendix B by stating 𝐷 , , = 𝐷 , . The 

second assumption, non-pathological design, requires there to be at least one cohort of irrigators 

who adopt the new technology at a time when another cohort continues to use the old 

technology. The first two assumptions are satisfied with our data.  

The third assumption, that of no anticipation, requires there be no dependence between a 

group’s untreated outcome and its future treatments. In our context, this means that we assume 

irrigators do not adjust their water use with the old technology in anticipation of adopting the 

more efficient technology. The fourth assumption requires the trajectories of the counterfactual, 
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or never adopter, outcomes remain the same across all cohorts after accounting for the impact of 

covariates with a linear model in 𝑋 , , − 𝑋 , , ℓ . Using 𝑌 , , (𝐷 ) to indicate the 

counterfactual outcome for groups with 𝑔 ≤ 𝑇, this assumption requires there to be a vector 𝜃  

so that within each group and time period cell, (𝑔, 𝑡), the following does not change across 

groups for 𝑡 ≥ 2: 

𝐸 𝑌 , , (𝐷 ) − 𝑌 , , (𝐷 ) − (𝑋 , , − 𝑋 , , ℓ )′𝜃 |𝐷 , , , 𝑋 , ,     (D.5) 

Equation D.5 expresses a specific version of conditional parallel trends assumption, 

where groups can have differences in their counterfactual behavior if it is explained by the 

change in their covariates over time. This expression also requires the adoption behavior and 

counterfactual outcomes for different groups of irrigators to be independent, and that any random 

shocks affecting a group’s never-treated outcome be mean independent of the group’s treatment 

sequence. In our context, this allows water right group’s counterfactual outcomes and treatment 

trajectories to differ so long as it is explained by the change in weather between time periods. 

However, we expect differential trends in water right groups’ behavior due to heterogeneity in 

their time invariant characteristics, such as total irrigated acreage, to violate this assumption. As 

such, we create five sets of water right groups using quintiles of the groundwater withdrawn by 

water right groups in the first year they appear in each sub-sample dataset. We then use the non-

parametric matching feature of de Chaisemartin et al.’s did_multiplegt STATA package to only 

compare outcomes within these quintiles when estimating 𝛿  for each of three technology 

changes (Clément de Chaisemartin, D’Haultfoeuille, and Guyonvarch 2019). 

Given this specification, the 𝛿  estimator generates counterfactuals for adopters using 

the outcome evolution of all control observations in the same quintile of initial withdrawals 

conditional on the evolution of time-varying covariates. If differences between the counterfactual 
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outcomes of adopters and control water right groups can be explained by a linear function of 

time-varying covariates—precipitation and evapotranspiration in our context—then the 

conditional parallel trends assumption for the 𝛿  estimator may be more likely to hold. 

However, the 𝛿  estimator may end up using water right groups who are dissimilar to treated 

groups as controls because they share similar time-varying covariate behavior as the treated 

units. 
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Table D.10: Estimated average treatment effect for each technology change across all three 
estimators and dependent variables using the full time periods for each sub-sample. Asterisks 
indicates 95% confidence interval does not contain zero.  

Technology  
transition 
 

Estimator  Dependent 
variable 

 

 Acre-feet 
withdrawn 

Acres irrigated Depth-applied 

Flood to center 
pivot 

Callaway and 
Sant’Anna (2020) 

2.79 
(-14.66, 20.23) 

10.31 
(-0.55, 21.16) 

-0.06 
(-0.14, 0.03) 

 de Chaisemartin & 
D’Haultfouille (2021) 

5.58 
(-5.76, 16.92) 

12.10* 
(5.74, 18.45) 

-0.04 
(0.01, -0.10) 

 TWFE -17.90* 
(-22.86, -12.95) 

6.47* 
(2.99, 9.95) 

-0.14* 
(-0.17, -0.12) 

     

Traditional 
center pivot to 
LEPA 

Callaway and 
Sant’Anna (2020) 

-6.78 
(-17.29, 3.72) 

-2.07 
(-8.58, 4.44) 

-0.02 
(-0.06, 0.02) 

 de Chaisemartin & 
D’Haultfouille (2021) 

0.06 
(-2.47, 2.03) 

-0.22 
(-2.47, 2.03) 

0.00 
(-0.03, 0.02) 

 TWFE 5.91* 
(3.33, 8.5) 

-0.47 
(-1.82, 0.87) 

0.03* 
(0.02, 0.04) 
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Figure D.3: Comparison of average treatment effect estimates for the preferred 𝛿  estimator 
from Callaway and Sant’Anna (2020), the 𝛿  estimator from de Chaisemartin and 
D’Haultfoeuille (2022) described in Appendix D, and two-way fixed effects (TWFE) estimation. 
Treatment effects are expressed as a percent change relative to the sample mean of each 
dependent variable.  
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Figure D.4: Effect of changing from flood to center pivot irrigation at time 𝑙, where 𝑙 is years 
relative to when center pivot is first adopted. Effects are expressed as a percent change relative to 
the sample mean of each dependent variable. Error bars represent the 95% confidence interval, 
with dotted lines indicating the confidence interval extends beyond the y-axis range.   
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Figure D.5 Effect of changing from traditional center pivot to LEPA irrigation at time 𝑙, where 𝑙 
is years relative to when LEPA is first adopted. Effects are expressed as a percent change relative 
to the sample mean of each dependent variable. Error bars represent the 95% confidence interval, 
with dotted lines indicating the confidence interval extends beyond the y-axis range. 


